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1. Introduction 

This report  deals  with considerations of t he  s ta t i s t ica l  aspects  

of carbon f i b e r  r i s k  assessment modeling f o r  f i r e  accidents involving 

commercial a i r c r a f t .  There are numerous advantages t o  using carbon 

f i b e r  mater ia ls  on a i r c r a f t ;  s t r eng th  and weight reduction a r e  two such 

examples. However, should an a i r c r a f t  be involved i n  a f i r e  accident,  

the p o s s i b i l i t y  e x i s t s  fo r  a release of free carbon f i b e r s  t o  the atmo- 

sphere with 3 po ten t i a l  e f f e c t  of some of these f i b e r s  i n f i l t r a t i n g  

and short ing out e l e c t r i c a l  and e l ec t ron ic  "machinery". 

The ult imate goal of the elitire carbon f i b e r  r i s k  asaessment pro- 

gram was ! P  determine r i s k  p r o f i l e s  fo r  t h i s  phenomenon; t h a t  is, curves 

of potent ia l  damage values and t h e i r  associated probabil . i t ies.  

comprehensive reviews of the f ac to r s  a f f ec t ing  such p r o f i l e s  and of the 

e n t i r e  r i s k  assessment program i t s e l f  a r e  given by Huston (1979, 1980). 

The present s t u d y  focuses on the s t a t i s t i c a l  aspects influencing t h e  

development of the r i s k  p ro f i l e s .  

Very 

The next sect ion of the report  presents an overview of t he  sta- 

t i s t i c a l  problems encountered in  producing r i s k  p r o f i l e s  and i d e n t i f i e s  

the major sources of uncertainty.  Sections 3, 4 ,  and 5 t r e a t  each of 
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these major uncertainty souxces i n  d e t a i l ,  namely sec t ion  3 dea l s  with 

imprecise knowledge i n  e s t ab l i sh ing  the  model, Sect ion 4 t r e a t s  t he  

problems associated with model parameter estimation and Sect ion 5 con- 

cen t r a t e s  on sampling errors i n  the  Monte Carlo simulation ana lys i s  

and obtaining confidence bounds on the results. Final ly ,  Section 6 

provides a general  framework f o r  bui lding i n  and obtaining conserva- 

t i s m  i n  r i s k  p r o f i l e  generation. 

2. Treatment of Errors and Uncertaiaty 
ir, CF Risk Analysis 

In  assess ing  CF-related damage due t o  accidents  of commercial 

a i r c r a f t ,  var ious uncer ta in t ies  must be d e a l t  with. The cost incurred 

from a CF incident  w i l l  vary according t o  the circumstances surrounding 

the  incident ,  and the r e su l t i ng  uncertainty i n  the cos t  incurred is 

therefore  described by D r i s k  p ro f i l e .  A similar r i s k  p r o f i l e  is used 

to describe the  uncertainty associated with the total  cos t  incurred i n  

a year from CF incidents .  The goal of r i s k  ana lys i s  is t o  determine 

these p ro f i l e s  which r e f l e c t  the inherent randomness of  ac tua l  physical  

phenomena. 

In  the pursu i t  of es t imat ing these r i s k  p ro f i l e s ,  addi t iona l  

uncer ta in t ies  (poten t ia l  sources of e r ro r )  are encountered. These can 

be c l a s s i f i e d  i n t o  three general categories:  (1) imperfections i n  the 

mathematical model of the  physical phenomena, (2) inexact spec i f i ca t ion  

of t h e  numerical and quant i ta t ive  aspects  of the model, (3) s t a t i s t i ca l  

e r r o r  from simulation sampling. A careful  modeling e f f o r t  and a sta- 

t i s t i c a l l y  sound methodology can help to  control  these uncer ta in t ies ,  

thereby preventing them from contr ibut ing t o  misleading conclusions 

about the r i s k  p rof i les .  I n  the CF analyses performed here, these 

f ac to r s  have generally been control led o r  else dea l t  with conservatively,  

r e su l t i ng  i n  conservative estimates of thl r i s k  p ro f i l e s .  

We w i l l  naw elaborzte  on each of t h e  three sources of uncer- 

t a in ty  j u s t  mentioned and on how 

analysis .  

they were dea l t  with in the  CF r i s k  

- 2 -  
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(2) Imperfect mode2. By its very nature,  the  mathematical model 

w i l l  be an  approximate descr ipt ion of the physical phenomena. 

s u l t s  from imprecise knowledge of the phenomena, the  need f o r  tract- 
a b i l i t y ,  and fac tore  t h a t  may have been overlooked. For exanple. i n  the 

CF model considerable aggregation is necessary, but t h i s  is performed 

caut iously by using conservative numerical quan t i t i e s  f o r  e n t i r e  classes 

of equipment, buildings,  a i r c r a f t ,  etc. 

w e d  instead of d i s t r ibu t ions  of cos ts ,  but  it can be shown t h a t  the  

This re- 

Deterministic cos t  values were 

l a w  of averages” implies minimal e r r o r  propagation due t o  t h i s  modeling 

s implif icat ion.  Many secondary economic e f f e c t s  ( l o s t  production, clean- 

up, e t c . )  were included and t h e i r  cos t s  conservatively estimated; f o r  

example, the modeling approach of OR1 allowed the e n t i r e  grclss domestic 

product of an area t o  be lo s t .  

11 

In  general ,  a modeling philosophy of 

reasoned conservatism” w a s  followed. I1 

(2) Numerical inputs for  the modeZ. The model of CF r i s k  requires  

many numerical and o ther  quant i ta t ive  inputs ;  among these are accident 

rates, posi t ions of vulnerable equipment, weather frequencies,  a i r  t r a f f i c  

project ions,  building t r ans fe r  coetificients,  f a i l u r e  probabi l i ty  d is t r ibu-  

t ions,  e t c .  Most of these quan t i t i e s  must be estimated from da ta  and then 

projected t o  thn, year 1993, which leads t o  only approximate values of 

these quan t i t i c s  fo r  use i n  the model. A conservative approach w a s  gener- 

a l l y  taken. 

penetration, conservatively high values were used. For many other  f ac to r s ,  

s e n s i t i v i t y  analyses showed tha t  imprecise knowledge of t h e i r  t rue  values 

had minor e f f ec t s  on the f i n a l  estimate of t h e  r i s k  prof i les .  One sensi-  

t i v e  parameter, however, is the equiament f a i l u r e  d i s t r ibu t ion .  Equipment 

f a i l u r e  data  and theore t ica l  considerations showed tha t  exponential fa i l -  

u re  laws were appropriate i n  many cases and conservative i n  others .  

Thus the use  of exponential f a i l u r e  laws i n  the model leads t o  conserva- 

t i ve  r e su l t s .  F u r t h e r ,  u se  of vulnerable 1979-vintage equipment resul ts  

i n  conservative approximations t o  1993 e lec t ronic  equipment. 

Yor example, for  f ac to r s  such as 4 ”  re lease  and bui lding 

(3) Simulation smpzing error. The r i s k  model is exercised by 

simulat4.on. This is equivalent t o  drawing a s t a t i s t i ca l  sample from a 

- 3 -  
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population, and a t t r i b u t e s  of the population are then estimated from the 

sample. When the computer simulation sampling is done properly, i t  is 
possible t o  use modifications of c l a s s i c a l  statistical techniques t o  

generate accurate bounds on the sampling e r r o r ,  which permits t he  estab- 

lishment of confidence bounds on the r i s k  p ro f i l e .  

To summarize: by performing ca re fu l  analyses it is possible  t o  

exe r t  con t ro l  over thz e f f e c t s  of various sources of the added uncer- 

t a i n t y  (or e r r o r )  which can influence the estimate of  t h e  r i s k  p ro f i l e s .  

While the statistical aspects  of model building and simulation interpre- 

t a t i o n  are not w e l l  developed enough t o  give p rec i se  conclusions on the  

t o t a l  e r r o r  i n  the f i n a l  answers, it is possible t o  analyze t h e  e r r o r s  

individually due t o  the  separate  sources and t o  control  them. Figures 

2-1, 2-2, and 2-3 i l l u s t r a t e  th:. process. The interaction of t he  many 

sources is a problem, but a f a i r l y  s t rong degree of confidence i n  the 

conservatism of the f i n a l  conclusion arises from the conservative and 

s t a t i s t i c a l l y  sound approaches taken t o  control  the individual e r r o r  

sources. 

3. Treatment of Imprecise Knowledge 
in Model Conception 

Any model is an abstract ion of and approximation t o  the real  

I n  constructing a mdel, of ten a trade-off is necessary be- world, 
tween "realism" and t r a c t a b i l i t y .  Further, judgements are o f t en  re- 

quired i n  making ce r t a in  assumptions concerning how fac to r s  beh,.re and 

r e l a t e .  

This sect ion deals  with two such examples, namely the ase of 

determinis t ic  values i n  place of random variables  i n  order to  gain madel- 

ing eff ic iency,  and the choice of an appropriate probabi l i ty  d i s t r ibu -  

t ion for  representing equipment f a i l u r e .  
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Figure 2-1.--Risk profile methodology. 
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3.1 Use of expected or determinis t ic  values 
i n  place of random var iab les  

The simulation ana lys i s  o f  CF damage and its cost  is based to a 
la rge  extent upon various averages, but the  goal is t o  estimate (with 

confidence) r i s k  probabi l i t ies .  

var ia t ion  of input data w M c h  are assrmred constant can hawe on the  e* 

ulation contrlusioue. 

Wls section focuses on the  e f f e c t  that 

Average values have beeu used instead of random one8 f o r  r epa i r  

and downtime costs in the  current  simulation modelig effort. 
ing the  categories aad types of repair aml djs rupt ioa  costs, i t  seems 

that each would tend to  be qu i t e  variable. 

(0/3 
The question is: 
instead of expected costs? 

Consider- 

A coef f fc ien t  of  vadation 
equal to 2 or 3 would not be unreasonable f o r  most of these costs. 

What is the  e f f e c t  of using variable costs i n  fnputs 

The possible magnitude of such a change i n  the model can be seen 

for  the variance of the  nat ional  conditional r i s k  p ro f i l e  by considering 

the following analysis  of a much simpler problem. Let X equal the to- 
ta l  economic l o s s  o r  cost, given an accident a t  some par t i cu la r  a i rpo r t .  

Roughly speaking, 

cos ts  L1,L2,L3, ..., LN , where N is randomt 

X equals the sum of a la rge  number of individual 

M 

i=l 
x -  1 L i .  

Now consider the d is t r ibu t ion  of 

ance. 
X , i n  par t icu lar  its mean and vari-  

Making the s implif icat ion fo r  i l l u s t r a t i v e  purposes t h a t  the  Li's 

are independent and have common mean vL and standard deviation aL , 
we have 

- 8 -  
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Therefore, 
(3.1) 

Now consider 
m 

X' = 1 E[L) = N E[L] = NI+, , 
i=l 

which is analogous to  computing r i s k  by assuming the  costs are fixed a t  

t h e i r  expected values; 

W ' I  = E[NIlJ L '  

From the  accidental  nature of the  process deneratin2 the cos t  it is not 

unreasonable t o  assume t ha t  N has a Poisson d is t r ibu t ion .  Then 

Suppose the 

tha t  is, . 

coef f ic ien t  of var ia t ion  of the  cost d i s t r ibu t ion  equais k , 

uL/PL = ' 
01: 

Then 

and hence 

- 9 -  
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'pbas, i f  the iaBitridaal costs-have cokfficbnt of variatim Is, 

variation of risk fs 

tk- true 

1+k2 tfmes the  value obtained u e i q  expected costs. 

The above is not meant to be a precbe analy~ie for the actual 

system d e r  comideration. 
&mire analysis may roughly apply. 
costs. it can have a p r o n o ~ e d  effect oa the variation of the t o t a l  

risk. It LS not rmreasormbAa to beliewe the costs could have a coeffi-  

cient of  va r i a t ion  equal to  2 or 3, and in this case the standard dewla- 

tion of X will be approximately 2.24 or 3.16, respect ively,  t i m e s  as 

Ilowewt, the two are dose enough that the 

m l y ,  i f  there is much variation in 

great as that of x' . 
We have seen that in adding up a random number of randomly dis- 

t r ibu ted  costs, i f  the costs are assumed to be f ixed and nonrandom, a 

term l ~ a p ~  is ignored, and t h a t  t h i s  can be serious i f  % is of the 

same order  of magnitude 88 a i  and Q / 

is true. 

mean fn that case, r i s k  curves f o r  two cases are plot ted i n  Figure 3-i; 

one f o r  fixed cos ts  of $1 per f a i l u r e  and one fo r  a d i s t r i b u t l m  of costs 

fo r  each fa i lure ,  $0 and $2 being equally l ikely.  A normal a k  -0xfma- 
t ion  to the Poisson is used. 

2 

>1 . If N is Poisson this L %- 
To get  some idea of what the assumption of f ixed costs would 

Note that ,  i n  a sense, t h e  severity of the  e r r o r  by assuming 

fixed cos ts  depends on how the  graphs are used. 

t ha t  can be read off these graphs: 

percentiles.  

There are two quant i t ies  

ta i l  probabi l i t i es  and ta i l  

T d l  probabilities: Suppose one is interested i n  the  probabi l i ty  

of the damage exceeding $140. The correct  answer is .0024, the  incor rec t  

answer I s  .000033, almost two orders of magnitude too optimfstic--a 

ra ther  bad err. r. 

Tail percentiles: Suppose one is interested In the 99.99th per- 

cent i le .  The correct  answer is $153. The incorrsct  answer I s  $137--not 

a very great  e r ror .  

- 10 - 
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A =en correct variance is but& the incorrect var- 
Satwe, for certain &es it may not be too serhw a mistake. 

me reason we c8n obtaia a ppod es t imate  6f percen t i l e s  from the  

incorrect curve is that the slopes are steep. So the quest ion arises: 
Muat happaw when the s lope  of t he  curve based upon ffrred costs is not  

steep? Such Will  only arise f o r  a risk d i s t r i b u t i o n  with a heavy t a i l  
ostrich implies  a high coe f f i c i en t  of variation 4 ~ / %  ; f o r  i l l u s t r a t i v e  

purposes let's suppose 

considered, m l y ,  the magnitudes of % and % . Reconsider Equa- 

t ion  (3.1), namely, 

9% = 3 . However, another factor now must be 

If we can assume the total  cost incurred during a year equals  t he  sum of 

many sinall costs (perhaps, on t he  average, ZOO such cos ts ) ,  and f u r t h e r  

assume that they are roughly independently and iden t i ca l ly  d i s t r ibu ted ,  

then i n  (3.1) % = 100 and cs = 300 . Furthermore, I f  we assume a 

worst C a s t  of 
N 

t / y ,  = 10 , then the  summands of (3.1) s a t i s f y  

Thus using f ixed  costs ignores approximately 10% of t h e  var ia t ion .  

The t en ta t ive  conclusion is th i s :  If one can assume t h a t  the  total  
cos t  is the sum of many small cos t s  and the  number of these small cos t s  

incurred is d i s t r ibu ted  with ON/$ > 1 , then one can ge t  a f a i r l y  good 

est imate  of the variance by using the average cos ts  r a the r  than the  dis-  

t r i b u t i o n  of costs .  

analogous t o  :roofs of the  c e n t r a l  l i m i t  theorem f o r  sums of indepen- 

dent but not i den t i ca l ly  d i s t r ibu ted  random variables .  However, the  

above p o s s i b i l i t i e s  hold only when t h e  t rue  mean cos t s  are used. I f  

these are not  known exact ly ,  another source of var ia t ion  is introduced. 

We bel ieve t h i s  could be made prec ise  in a manner 

- 12 - 
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3.2 A Reneral model o f  electronic 
equf men t f a i l u r e  

We excLIBLIne a simple, but f a i r l y  

process by which a piece of electronic 
general, s t o c b t i c  model of t h e  

equipment (here inaf te r  called the 

i t e m " )  m y  f a i l  to function properly because of exposure to  carbon nt 

f i b w s  (CP). The model ass.um&s t h e  item to  be composed of  n indepen- 

dent subsystems or "circuits," each of which receives the  same amount 

of exposure E t o  CF, thereby causing it  t o  receive "shocks" or  "hits" 
according t o  a Poisson s tochas t i c  process. C i r cu i t  j 

f a i l  a f t e r  receiving r shocks, j=l, ..., n , and the  

t o  f a i l  when s c i r c u i t s  have f a i l ed ;  only the  cases 

are examined i n  de t a i l .  

which a l l  r are the  same. 

3 

Also, w e  only examine closely 

.I 

is assumed to  

i t e m  is assumed 

s=l and s=2 

the  cases i n  

For the  various cases considered w e  compute F(E) , the  probabili ty 

t h a t  t he  item f a i l s  due t o  the exposure E . The a lgebra ic  form of F(E) 
indicates  the probabili ty d i s t r f b u t i m  of the exposure l eve l  a t  which 

the item fai ls ;  f o r  c e r t a i n  combinations of  the  parameters n , s  and r 

t h i s  d i s t r i b u t i o n  is e I the r  exponential o r  Erlang-r ( fo r  r > l ) .  For 

o ther  combinations of the parameters the  probabi l i ty  d i s t r ibu t ion  is not  

one of the  well-known types .  

.I 

For a l l  cases  considered we examine the asymptotic behavior qf F(E) 

as E decreases t o  zero. It is found t h a t  F(E) is approximately equal 

t o  .Eq f o r  small values of E , where the constant c and the pos i t i ve  

in teger  q depend on the pa r t i cu la r  case as w e l l  as the parameters. An 

exponential f a i l u r e  d i s t r ibu t ion  y ie lds  q=l while an Erlang-r f a i l u r e  

d i s t r ibu t ion  y i e lds  q=r . 
Our conclusions are:  (1) many d i f f e ren t  f a i l u r e  d i s t r ibu t ions  

a r i s e  from d i f f e ren t  choices of the model parameters; (2) examination 

of F(E) for small values of E is not a good guide f o r  i n fe r r ing  the 

probabili ty d i s t r ibu t ion  of f a i l u r e  of t h e  item. 

- 13 - 
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3.2.1 me general model 

The,mQdel is based on the followin$ assumptions. The i t a  consists 
of n Independent c i r c u i t s ,  each subjected to  an exposure E Circuit 

j (j=l,.q.,n) is character ized by t h e  parameter R , where l /a  is 

the S m w p  amount of incremental exposure bsWeen consecutive shocks of 
circuit j . More p r e c b e l y ,  we assume t h a t  for ewe* value of E i n  

the interval (0,m) , t he  p robab i l i t y  d i s t r i b u t i o n  of the number of shocks 

of c i r c u i t  j 

R C C U m U l a t e d  t o  a value of E 5s t h e  Poisson d i s t r i b u t i o n  given by 

5 3 

during t h e  period of time during which the exposure has 

j (ajE) "3 /xj! , x =0,1,2,... . (3.2) 
-a E 

3 Pj(xj) = e 

-a E 
I n  pa r t i cu la r ,  Pj(0) - e 3 

It I s  assumed t h a t  c i r c u i t  j has f a i l e d  due to the exposure E 
i f  it has received r o r  more shocks, where r (assumed given) has one 

of the values lY2,.. .  . L e t  F (E) be the probabi l i ty  t h a t  c i r c u i t  'j 

f a i l s  due to the exposure E . Then 

3 j 

3 

It is assumed t h a t  the item has f a i l e d  due t o  the exposure E i f  

s o r  more c i r c u i t s  have fa i l ed ,  where 8 (assumed given) has one of t he  

values lY2,...,n . L e t  F(E) be the probabi l i ty  t h a t  the item f a i l s  

due t o  the exposure E . We w i l l  i n i t i a l l y  w r i t e  expressions f o r  F(E) 
€or three f a i r l y  general cases and then analyze various cases i n  d e t a i l .  

For s=l we have 

- 14 - 
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For s=2 we have 

l-F(E) - Pr{O circuits failed) i- Prfl circuit failed) 

For general s we consider only the case in which r =r and 
5 

aj=a for all ja l , .  . . , n  . Then 

r- 1 

xu0 
Fj(E) = F,(E) = 1 - 1 e-aE(aE)X/x! , 

and 

and 

(3.5) 

3.2.2 Case I: r =l €or all  j=l, ..., n 
j 

We f i r s t  treat  the s i tuat ion i n  which s-1 . For r j =1 w e  have 

-a E 
Fj(E) = 1 - e j . Then, from ( 3 . 3 ) ,  we find 

-naE F(E) = 1 - e 9 

where 

is  the average shock rate .  
disrribution of fa i lure  is expomntial. 

Equation ( 3 . 7 )  shows that the probability 

- 15 - 
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We now examine the asymptotic behavior of F(E) as E decreases 
to zero. 

F(E) -cEq to indicate that F(E)/Eq approaches the constant c a6 

E decreases to zero. 

terms of the form eDkE by the power series lT=o(-kE)i/i! and then to 

collect coefficients of the various powers of 
omitted. The present case of the exponential distribution (8-1, all 

Tn general, for these asymptotic analyses, we will write 

The method used will almost always be to replace 

E . Details will be 

"1) is the easiest, and yields, from (3.71, 
=j 

F(E) .., ME ; (3.9) 

Le., F(E) is asymptotically linear in E . 
Now we treat. the situation in which s=2 . Direct substitution 

into (3.4) yields 

e j - (n-1) . 1 F(E) = 1 - e (3.10) 

This expression does not correspond to the cumulative distribution func- 
tion (CDF) of any well-known probability distribution. Asymptotic anal- 
ysis of (3.10) yields 

(3.11) 2 P(E) - CE , 

where c = (n a ) / 2  , 80 F(E) is asymptotically quadratic in E . 

afEa for 
Specializing expressions (3.10) and (3.11) to the case 

all j leads to simpler expresaions for F(E) and c , but the former 
still does not correspond to the CDF of any well-known distrioution. 

- 16 - 
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3.2.3 Case 2: r -2 f o r  a l l  j=l, . . . ,n 
j 

-a,E 
Now F (E) * 1 - e  (l+ejE) For the  case s=l expression 3 

(3.3) leads t o  

This is not the  CDF of any well-known d is t r ibu t ion ,  even i f  i t  is spe- 

c ia l ized  t o  the  case a f o r  a l l  J . Asymptotic ana lys i s  of (3.12) 
JEa 

yie lds  

2 F(3) - c E  , (3.13) 

z where c = ( l j a j ) / 2  , so here again F(E) 

i n  E . 
is asymptotically quadrat ic  

For s=2 expression (3.4) le& - t o  

3 n 
W E )  = 1 - e Il ( l + a j E )  - (a-1) n (l+ajE) , (3.14) 

k=l 3+k j=l 

and asymptotic analysis  of (3.14) yields  

4 F(E) cE , 
where 

for  a l l  j , the constant c simplifies t o  
a j  ma 

For the case 

n(n-1)a /8 . 4 

3.2.4 Case 3: n=l 

(3.15) 

In  t h i s  case the item is t reated as being composed of only one 

by r and a by a , and must have sol . 
j 

c i r c u i t .  We now replace 
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Then expression (3.3) y i e l d s  

Pl 

x=o 
F(E) = 1 - 1 ecaE(aE)'/x! = P,(E) . (3.16) 

Di f f e ren t i a t ion  of (3.16) w i t \  respect  t o  E y i e l d s  t h e  density function 

(3.17) r-1 -aE f(E) = dP(E)/dE = a(aE) e /(r-l)! , 
which shows t h a t  the f a i l u r e  d i s t r i b u t i o n  is ErZang-r. 
sis of (3.16) is a h.l? "ore complicated i n  t h i s  case. but eventually 

y i e l d s  

Asymptotic analy- 

F(E) - cEr , (3.18) 

r where c * a /r! . Thus F(E) is asymptotically l i n e a r  i n  E f o r  r=l 
( the exponential case), quadratic i n  E f o r  r=2 , e t c .  

3.2.5 Case 4: general s 

Expression (3.6) gives F(E) f o r  the case rj=r and aj=a f o r  

a l l  j , and t h i s  cannot be s ign i f i can t ly  s implif ied,  even for r=l . 
For the asymptotic ana lys i s  w e  note t h a t  s of the n c i r c u i t s  must 

f a i l  i n  order t o  cause f a i l u r e  of t h e  item, and each of the  6 f a i l i n g  

c i r c u i t s  has FJ(E) - arEr/r! . Thus 

F(E) -, cErs , 
where 

(3.19) 

(3.20) 

It is not d i f f i c u l t  t o  see t h a t  expression (3.19) a l s o  holds when the 

are d i f f e r e n t ;  the constant c i s  then no longer given by (3.20), 
a j  
but is instead more complex t o  express. What is important, of course, 

is t h a t  F(E) - cEq , where q 5 rs . 

- 18 - 



T-419 

3.2.6 Case 5 :  asymptotic r e s u l t s  
f o r  t he  general case 

For the asymptotic analysis  the argument is still v a l i d  t h a t  8 

of the n c i rcui ts  must fa i l  in order  to  cause f a i l u r e  of t he  item, 

and now we have 

is not d i f f i c u l t  t o  see t h a t  

r r  ' E j / rj: . Asymptotically, therefore ,  i t  "3 F (E) - 
j 

F(E) - .Eq , (3.21) 

where c is a constant whose exact value is a lgebra i ca l ly  messy t o  . .:f? 

down and 

S 
(3.22) 

where the  r a r e  ordered so t h a t  
j 

Expression (3.22) reduces t o  q-rs i f  t he  s smallest r values are 

a l l  equal t o  r . 
j 

3.2.7 Case 6: l imiting case 
f o r  8=1 and large n 

and a =a f o r  a l l  j . 
r j  =r j 

We consider only the case where 

As discussed by Mann, e t  aZ. (1974), pp. 102-108, aa n approaches 

i n f i n i t y  the l imi t ing  f a i l u r e  d i s t r i b u t i o n  is Weibull with shape para- 
meter r . This has CDF 

r -cE F(E) - 1 - e 9 (3.23) 

where c is a constant. 

as the exponential. The 

For r=l the Weibull d i s t r i b u t i o n  is the same 
asymptotic form of (3.23) is c l e a r l y  

F(Z) - cEr . (3.24) 

- 19 - 
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3.2.8 Conclss ions 

The f a i l u r e  model examined l e a d s  to  d i f f e r e n t  f a i l u r e  d i s t r i b u t i o n s  

when d i f f e r e n t  choices  are made f o r  the parameters  n , s , r and a, . 
For s=1 and a l l  

For n = l  (so t h a t  

(Case 3). For n 

J 

rj=l w e  o b t a i n  the  exponen t i a l  d i s t r i b u t i o n  (Case 1) .  

s=l and rl=r) w e  o b t a i n  t h e  Erlang-- d j s t r i b u t i o n  

f o r  a l l  j , t h e  
and aj'a l a r g e ,  s=1 , and r =r 

j 
f a i l u r e  d i s t r i b u t i o n  is approximately WeibJl l  wi th  shape parameter 

(Caee 6). For the  o t h e r  combinations examined, t h e  f a i l u r e  d i s t r i b u t i o n  

is n o t  one G~ t h e  s t anda rd  ones. 

equipa-. i t ,  examination of t h e  c i r c u i t r y  and phys ica l  arrangement of t h e  

components may h e l p  t o  e s t a b l i s h  which combinations of t he  model garame- 

ters are most a p p r o p r i a t e  ( i f  indeed any of them a r e ) .  

r 

For a p a r t i c u l a r  p i e c e  of e l e c t r o n i c  

Asymptotic a n a l y s i s  indicates t h a t  t he  f a i l u r e  p r o b a b i l i t y  F(E) 

behaves l i k e  ,Eq f o r  very small va lues  of E , where c is a cons tan t  

and q is a p o s i t i v e  i n t e g e r .  Tine expon tn t i a l  f a i l u r e  d i s t r i b u t i o n  is 

t h e  m l y  one f o r  which q = l  ; f o r  a l l  o t h e r  cases q 7 1  . Both t h e  

Erlang-r (Case 3) and Weibul l - r  (Case 6)  d i s t r i b u t i o n s  y i e l d  q=r bu t  

t hese  are not  t h e  only f a i l u r e  d i s t r i b u t i o n s  wi th  q*r ; f o r  example, 

9-2 a l s o  arises (a) with s=2 and all r =1 (Case l), (b) w i th  a m 1  

and a l l  r =2 (Case '', and (c )  i n  the gene ra l  Case 5 with 
j 

j 

S 
- 2 .  1 r j  P'l P 

Since the  Rame asymptot ic  form of F(E) arises from a nuinber of d i f f e r -  

e n t  f a i l u r e  d i s t r i b u t i o n s ,  i t  is c l e a r l y  inappropr i a t e  t o  i n f e r  t h e  type  

of f a i l u r e  d i s t r i b u t i o n  from an examination o f  

?(E) of F(E)] f o r  smal l  values of E . 
F(E) [or  an estimate 
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It is important to note tha t ,  except for the exponential (spl 

and a l l  

with increasing hazard rate (IHR). 

4.2 on testing for the exponential Pallure dis t r ibrr t ioa are therefore 
appropriate. 

r el), a l l  the cases exmined here lead to failure d i s t r ibu t ions  
j 

The analyses and remarks of Section 

4. Treatment of Parameter Estimation 

A second major source of e r r o r  in probabi l i ty  modeling is due to  
having to  estimate parameters of probabi l i ty  d i s t r ibu t ions  and in some 

ca,oe the probabi l i ty  d i s t r ibu t ions  themselves. 

estimation problems and the s e n s i t i v i t y  of the r i s k  ana lys i s  models t o  

some of the  estimated values. 

This section treats some 

4.1 Estimating the parameter of the 
exponential f a i l u r e  model 

For the exponential f a i l u r e  model used i n  the  GFRAP r i s k  ana lys i s  - 
it is necessary t o  know the  value of the  parameter E . Since the  ac tua l  

value of the parameter can never r e a l l y  be known, the  usual procedure 

is 

most commonly used is the maximum likelihood estimate; w e  develop t h a t  

here. 

f a i lu re s  have been observed. 

use an appropriate estimate obtained from test data. The estimate 

W e  w i l l  u se  a Bayesian approach t o  treat the case i n  which no 

Suppose mt.n ident ica l  pieces of equipment have been exposed t o  

graphite f ibe r s  (or perhaps the same piece of equipment m+n 
and m of them have fa i led  a t  exposures El, ..., E while the other  n 

. Either  m or n could be have survived exposures of 

zero. P = Pr(1tem survives 

exposure E) = 1-e -(E’‘) , i t  is straightforward t o  show tha t  the l i k e l i -  

hood of t h i s  sample r e s u l t  A is given by 

times) 

m 

Eel’ , Em+n 
Based on the exponential f a i l u r e  model 
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where E* = Ei is t he  total exposure. The maximurn l ike l ihood 

estimate of , call it , is the value of E which maximizes &(A) ; 

it is e a s i l y  found t o  be 

A 

A - 
E - E*/m , 

provided m > 0 . I f  mp0 , i.e., no f a i l u r e s  have been observed, there  

is no m a n r i m  l ike l ihood estimate f o r  ; we t u rn  therefore  t o  t h e  

Bayesian approach. 

E and combines i t  with the l ike l ihood X(A) 
t a i n  a pos t e r io r  d i s t r i b u t i o n  on E . 
bution is o f t en  taken as a poin t  estimate of 

The Bayesian approach uses  a p r i o r  d i s t r i b u t i o n  on - 
v i a  Bayes' theorem t o  ob- 

The mean of the  pos t e r io r  d i s t r i -  - 
E . 

A convenient p r i o r  d i s t r i b u t i o n  to  use is one t h a t  is a n a t u r a l  

conjugate of the l ikel ihood X(A) , and i n  t h i s  case t h a t  is an inverted 

gama-1 d i s t r i b u t i o n  [see Raiffa  and S&la!irr (1961), Chapter 101 of t he  

form 

5 

where m' > 0 and E' > 1 a r e  parameters and K' is a normalizing 

constant. The mean of t h i s  p r io r  d i s t r i b u t i o n  e x i s t s  i f  m ' >  1 and 

i s  E'/(m'-1) . When t h i s  p r i o r  d i s t r i b u t i o n  is combined with the  

$ample l ikel ihood $(A) 
is e a s i l y  found t o  be inverted gamma-1 a l so ,  with parameters 

and E" = E'+E* . The pos t e r io r  mean is thus (E*+E')/(m+m'-l) . 

via Bayes' theorem, the pos t e r io r  d i s t r i b u t i o n  

m" = m ' i m  

Row shot ld  the  p r io r  parameters m' and E' be chosen? The 

following r a t iona le  is admittedly ad hoc, but it is r a t i o n a l  and It 

leads t o  a reasonable and useful  estimate of . For m > 0 , a 

Bayesian ana lys i s  is not needed s ince  w e  w i l l  use the maximum l ikel ihood 

estimate = E*/m , so we are only concerned with the  case mu0 . A 

- 22 - 
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For the case aP0 t he  p o s t e r i o r  mean is (EaOE')/(m'-l) . If 
one f ~ t W q s  Aad been observed along with the total exposure of E* , 
we would use the meximum l ikel ihood estimate = E*/l  = B* . We w i l l  

therefore choose t h e  p r i o r  parameters m' and E' so that With m = l  
anti the same t o t a l  exposure E* , t h e  pos t e r io r  mean would have this same 
value E* . This y i e l d s  (EW')/m' = E* , or E' = E+(m'-1) . 

A 

We will choose 3 so that the standard deviaticm of the p r i o r  

d i s t r i b u t i o n  is k times the  p r i o r  mean. This requires m' > 2, snd 
y i e l d s  the  equation 

When t h i s  is combined with the previous equation E' = E*(m'-l) , t he  

pos t e r io r  mean is found to  be 

E*(2k2+1)/ (k2+1) . 
To i nd ica t e  a good deal  of  p r i o r  uncertainty about t he  tm - d u e  of 
E it is appropriate to  chose k r a t h e r  large.  Even f o r  k=2 t h e  

above expression y i e l d s  a pos te r io r  mean of 1.8E* , and as k tends 

toward i n f i n i t y  m' tends toward 2, E' tends toward E* , and t h e  

pos t e r io r  mean tends toward 2.OE* . It is suggested t h a t  t h i s  value 

be used as an  appropriate estimate of 

i.e., use E = 2E* i f  PO . 

- 

- 
E f o r  the case of no f a l l u r e s ;  

- 

There is an a l t e r n a t e  r a t iona le  f o r  choosing m' and E' , 
and again ad hoc, t h a t  leads t o  the same p r i o r  parameters (m' * 2 

E' = E*) and hence the same value of the pos t e r io r  mean, 2E* . One 

may imagine the value as having been chosen as the  maximum t o t a l  

exposure f o r  the experimental t e s t i n g  because i t  w a s  f e l t  t h a t  t h i s  

much t o t a l  exposure would yield a t  least one f a i lu re .  From the rela- 

t i ons  m"-1 = (m-l)+m and E" = E'+E* one can i n t e r p r e t  t he  p r i o r  

Information implied by the choice of m' and E' as being equivalent 

to having observed (m'-1) f a i l u r e s  caused by a t o t a l  exposure of E' . 

E* 
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The choice of E* as hypothesized just above then suggests  the choices 

(m'-1) - 1 ayd E' E* . 
H a a l l y ,  let  us note that i f  no f a i l u r e s  have been observed and 

a conservative estimate of 'il i~ desired, then E = E* is appropriate 
since th i s  is equivalent to conservat ively assudng that one f a i h r e  

has dccurred, 

4.2 Test- for an emonen t ia l  f a f l u r e  
d i s t r i b u t i o n  

We were given f a i l u r e  da t a  f o r  equipineat exposed to carbon f ibe r s ,  

lbenty-one separate experiments were conducted using d i f f e r e n t  electrical 
components and/or d i f f e r e n t  lengths  of types of f ibe r s .  

was r ep l i ca t ed  several times ( the  number var ied between 3 and 11). 

equipment, f i b e r ,  and performer of these experiments are summarized in 
Table 4-1. 

, *  

Each experiment 

The 

Using the  data ,  we wish t o  test the  hypothesis t h a t  an exponent ia l  

d i s t r i b u t i o n  is a reasonable f a i l u r e  model f o r  electrical equipment ex- 
posed to graphi te  fi i iers,  i.e., t h a t  the probabi l i ty  p of f a i l u r e  is 

re l a t ed  t o  the exposure x by the funct ional  r e l a t ionsh ip  p = P(x) = 

1 - exp(-h;K) , f o r  some x , where l / X  = mean exposure t o  f a i lu re .  

The exponential  d i s t r i b u t i o n  is used widely i n  r e l i a b i l i t y  studies, 

and consequently there  is a considerable body of l i t e r a t u r e  concerned 

with est imat ion and t e s t i n g  r e l a t ed  t o  the  exponential  d i s t r ibu t ion .  A 

good discussion is found i n  the book by Manr, Schafer, and SingFurwalla 

(1974), Ch. 7. 

4.2.1 The Kolmogorov-Smirnov- 
L i l l i e f o r s  test 

Many test are based on the empirical cumulative d i s t r i b u t i o n  

function. 

of t h e  Kolmogorov-Smirnov t e s t  due to  L i l l i e f o r s  (K-S-L). We now 

describe i t .  

The most widely used of these appears t o  be the modification 
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1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

FAILURE DATA: 

Avionics termisal bhcks 

Dynaco amplifier 

DJmaco 

Dynaco 

WXUiCO 

.nyaaco 

Dynaco 

Dynaco 

m c o  

LSI-11 ctrmputer 

LSI-11 computer 

19" m 
19" m 
19" Tv 

Transponder 

Transponder 

Sunbeam toas t e r  

Sunbeam toas t e r  

Heritage House 

Heritage House 

Sunbeam toas t e r  

21 TBSTS OF BQUIPMRNT 

7.5 lllp As 

7 m m  

7 m m  

3.5 PIP 

15 urm 

15 rnm 

3.5 rnm 

7 m n  

1 rn sY70 

4.5 mm 

7 

8 

8 

8 

10 

3 

7 

3 

12 

7 

12 

m 

mmw 

mm T300 s ized 

rmn T300 unsized 

nun GI70 

m GY70 

mm T300 

rum GY70 

mm T300 

mm T300 

mm T300 

BZU 

Mike Vogel 

Mike Vogel 

Vogel 

Vogel 

Mike Harvey 

Mike Harvey 

Phil lips 

BRL 

BRL 

BRL 

BRL 

BRL 

Bione t ics 

Bionetlcs 

Bione tics 

Bione t ics 

Bione t ics 

Bione tics 

B ione t i c s  
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Suppose we test n items. For each item, note  the  exposure level 
a t  which it f a i l s .  (Note: all items must be exposed u n t i l  they xi 

f a i l ;  the results described here  are not v a l i d  i f  items are withdrawn 

before they fail.) Thus we get n f a i l u r e  values: x1,x2, ..., x 

The empirical d i s t r i b u t i o n  f u n c t i m  is 
11 

1 n 

Fn(x) 5 n x (number of f a i l u r e  values  5 x) 

(see Figure 4-1). 

ing CDF, F ; i.e., E(Fn(x)) = F(x) , f o r  a l l  x . (It has mathemati- 

cal proper t ies  which enable one to  use it i n  test statistics and t o  

make statements about t he  poss ib le  inference e r r o r s  of  such procedures, 

e.g., probabi l i ty  of f a l s e  r e j ec t ion  of a t r u e  hypothesis.) 

This funct ion fs an unbiased estimate of the  underly- 
A 

The usual procedure is t o  look a t  the maximum deviat ion between 
n 

F and the  hypothesized CDP Po However, we  are not hypothesizing 8 

s i n g l e  d i s t r ibu t ion ,  but an e n t i r e  family, the  exponential  family 

n 

Y 

1.0 

.5 

0 

f a i l u r e  values 

figure 4-1 .--The empir&?al cwmclative distribution finetion. 

- Ax {FA : Fx(xj = 1 - e , any A). In t h i s  case we estimate the  para- 

meter X from the da ta  (for the exponential  X = n / xf) , and 
A 

n 

rhea look a t  t h e  maximum deviat ion between the empirical CDF Pn and 
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n 
the exponential  CDF p); , with estimated parameter 

d - sup I P,(x) - F;(x) I 

I f  d Is large, we reject the hypothesis of exponent ia l i ty .  I f  d is 

small, we accept it. The c r i t i c a l  values  depend on n and on a , t he  

desired probabi l i ty  of f a l s e  re jec t ion .  

(1969). For example, i f  n=6 and we d e s i r e  only a 5% chance of f a l s e l y  

rejecting the  hypothesis of exponent ia l i ty  w e  should reject i f  

X , i.e., we look at  
A 

O p P  

They are given by L i l l i e f o r s  

We have applied the  K-S-L test f o r  exponent ia l i ty  to  four  of the  da t a  

sets obtained from NASA Langley. 

4-5- On a l l  four, t he  hypothesized (bes t - f i t t ing)  exponential  CDF is 

plo t ted ,  and then upper and lower bounds are given, based on t h a t  expo- 

n e n t i a l  CDF f t he  c r i t i c a l  value (.406, i n  the  case of 6 observations). 

I f  t he  empir ical  CDF f a l l s  i n  t h i s  region, w e  accept the  hypothesis of 

exponentiality. Otherwise w e  reject it. Note: f o r  set #l (Figure 4-21, 

we j u s t  barely reject exponent ia l i ty  a t  the  a= 5% l e v e l  (€.e., we would 

expect such a deviat ion t o  occur due t o  chance alone t o  be an event with 

probabi l i ty  c .05 ) ;  f o r  set 82, w e  accept exponent ia l i ty ,  even thol;gh t h e  

b e s t  f i t t i n g  Erlang has shape parameter 2 or 3; f o r  set #15 (Figure 4-41, 
t he  da t a  is highly s ign i f i can t :  reject exponent ia l i ty;  f o r  set 116 we 

accept, but j u s t  barely,  even though Erlang-4 is the  bes t  f i t t i n g .  In  

s e l e c t i n g  the  da t a  sets t o  analyze, w e  picked the  ones which seemed ta 
deviate  t he  most from being exponential. 

an overwhelming r e j ec t ion  of exponent ia l i ty .  

drawn from exponential populations, it would not be su rp r i s ing  t o  

They are graphed i n  Figures 4-2 through 

The r e s u l t s  do not c o n s t i t u t e  

Among 21 s e t o  of data ,  

f ind  2, say, which are s i g n i f i c a n t  a t  the  59: l eve l .  

To give some idea of how d i f f i c u l t  i t  would be t o  d is t inguish  

between an exponential d i s t r ibu t ion  and an Erlang-2, we generated a sample 

of s i z e  10 on an HP-25 ca lcu la tor  and then normalized the  values so t he  

sample mean was 1. The p l o t  of the  exponential  CDF, the  Erlang-2 CDF, 
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and the empirical  CDF drawn from the exponential are given i n  Figure 4-6. 

Note t h a t  f o r  such a small sample, ne i the r  d i s t r i b u t i o n  I s  an obvious 

choice. 

One property of t he  K-S tests is thirt they have very low power. 

"Power" is defined as the p robab i l i t y  of r e j e c t i n g  the hypothesis when 

it is f a l se .  

chance of r e j e c t i n g  tile hypothesis of exponentiali ty,  using a sample of 

s i z e  10 and a=.05 , would be .20 o r  less. 

I f  the t r u e  d i s t r i b u t i o n  is Erlang-2, we estimate t h a t  t he  
c 

4.2.2 The cumulative total-time-on-test 
statis: .c 

The low power of the K-S-L test motivates the search f o r  a more 

powerful test, i.e., one t h a t  is more l i k e l y  t o  reject t h e  hypothesis of 

exponentiali ty when i t  is fa l se .  

Btruct a special ized test which is espec ia l ly  good a t  r e j e c t i n g  exponen- 

t i a l i t y  when a c e r t a i n  class of a l t e r n a t i v e s  is t rue  and t o  demonstrate 

t h a t  t h i s  r e s t r i c t e d  class of a l t e r n a t i v e s  includes a l l  p o s s i b i l i t i e s  : 

roughly speaking, i t  is equivalent t o  saying t h a t  you have a b e t t e r  

One way to  increase power is t o  con- 

chance of making the  r i g h t  decision i f  there  are fewer a l t e r n a t i v e s  from 

which t o  choose. 

For the f a i l u r e  d i s t r i b u t i o n s  under consideration i t  is reasonable 

t o  assume nondecreasing hazard rate (IHR).  L e t  F be the CDF of a 
random va r i ab le  and f its density,  then r (x )  = f(x)/(l-F(x)) is t h e  

hazard rate. It follows t h a t  P{x<X$x-ldx - I X C X )  - z r(x)dx . The dis- 

t r i bu t ion  is IHR i f  r is nondecreasing. I f  r I s  constant,  then w e  
have an exponential d i s t r ibu t ion .  which is considered a boundary case of 
IHR. 
probab i l i t i e s  as a function of exposure; i t  is equivalent t o  saying: i f  

two components (#l and #2) have survived exposure levels el and e 

respectively,  e < e then the next increment of exposure, de , is 

IHR is a reasonable assumption f o r  the d i s t r i b u t i o n  of f a i l u r e  

2 '  

1 2 '  

more l i k e l y  t o  cause f a i l u r e  t o  112 than #l' l.e., 

f o r  e < e 2  . 1 

r(el)Ae < r(e2)Ae 
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Thus we are i n  a s i t u a t i o c  !f t e s t i n g  the hypothesis of exponen- 

t i a l l t y  versus t h e  q l te rnac ive  of IHR. The most powerful t e a t  (we kmw 

of) f o r  t h i s  s i t u a t i o n  is i,Jcussed by Barlow (1968). It is ac tua l ly  a 
tes t  f o r  exponential  vs, increasing hazard rate average (IHRA), A test 

which is v i r t u a l l y  as powerful I s  a test based on the the-on- tes t  sta- 

t i s t ic .  This test has o ther  des i rab le  fea tures ,  such as app l i cab i l i t y  

t o  censored samples and a nice s t a t i s t i c a l  d i s t r i b u t i o n  theory which 

makes it appear more a t t r a c t i v e .  It is described i n  d e t a l  by Barlow, 

Bartholomew, Bremner and Brunk (1972), Secion 6.2. We apply th-ls test 

t o  da ta  se t  116 (p lo t ted  i n  Figure 4 - 5 ) ,  the  trdnsponder exposed t o  3 arm 
f i b e r s  t o  GY 70 (Bionetics data) .  The 10 normalized f a i l u r e  times 

(exposures) are 

.36, .56,  .58 ,  .85,  1.05, l .N, 1.09, 1.26, 1.42, 1.78. 

A test s t a t i s t i c  is computed as follows: l e t  Xi:n be the i t h  ordered 

f a i l u r e  value, l e t  Di:n = (n-i+l) ) be the t i m e  (exposure) 

on test accumulatea between t h e  (i-1)st and the ith f a i l u r e  values. This 

tes t  uses the f a c t  t ha t  

under the assumption of exponent ia l i ty ,  while under the  aasumption of IHR, 

Thus under exponentiall ty the 

function of i ; under IHR the s lope is  negative. Thus t h i s  becomes a 
regression problem of t e s t ing  for zero slope vs. negative slope. The 

appropriate s t a t i s t i c  is 

DiZn's w i l l  tend t o  have 0 s lope  as a 

E cumulative-total-time-on-test s ta t is t ic .  
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We reject exponentiality for large values of 

V are given by Barlow et  al, (1972), page 269; for n=lO they are 88 

follows : 

Vn . Critical values of 

n 

0 -10 .os .025 .010 .OOS 

critical value 5.619 5.927 6.189 6.687 6.683 . 
For data sat #16 we get the following: 

1 
2 

3 

4 
5 
6 
7 

a 
9 
10 

&1 

.36 

.56 

.58 

. as 
1.05 
1.06 
1.09 
1.26 
l.42 
1.78 

3.60 
1.80 
.16 
1.89 
I. 20 
.05 
.12 
.51 
.36 
.36 

3.60 
5.40 

5.56 
7.45 

8.65 
8.70 
8.02 
9.33 
9.69 

10.05 

67.20 

This corresponds to significance at approximately a = .005 . 
we reject exponentiality in favor of ZHR. 

Thus using this criterf-on (the cumulative-total-time-on-test statistic) 
we have obserfed a deviation from exponentiality which would occur by 

chance with probability .005. 
tion hit the lower edge of a 95% two-sided region; this lower boundary 
would be an approximate boundary for an a = 10% level one-sided test. 
Thus the K-S-L criterion says such a deviation will occur approximately 
10% of the time purely by chance. 

Thus 
(We accepted it using K-S-L.) 

Note that in the K-S-L, the maximum devla- 

The extra sensitivity of the 
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cumulative-total-time-oa-test statistic is due to  the f a c t  that it  I s  

t a i l o r m a d e  for testing the s i t u a t i o n  i n  which we are in t e re s t ed ,  while 

the it-S is appl icable  t o  a broader range of situations and thus should 

not be expected to  compete favorably with s p e c i a l  tests i n  s p e c i a l  

s i t ua t ions .  

We appl ied the  cumulative-total-time-on-test statistic to a l l  2 1  

sets of data. The results are tabulated i n  Table 4-2. 

experiment separa te ly ,  t he re  are four  cases where exponent ia l i ty  can be 

re jec ted  and three  questionable cases. 
hypothesis f o r  t he  remaining cases. 

Considering each 

Exponentiali ty is a p laus ib l e  

These conclusions are based on considering each test separately.  

Bgponentiality was re jec ted  when the  test statist ic took an improbable 

value ( i n  the  1% extreme tail). However, i n  21 trials the  chance of an 

even of probabi l i ty  .01 occurr ing a t  least once is 1 - (.99I2l = .19 . 
Thus a l l  21 populations could have exponential  and y e t  there would be a 

.19 chance of r e j e c t i n g  exponent ia l i ty  f o r  at  least one of the  21. 

to  be rigorous and be s u r e  t h a t  the  chance of making such an inference 

e r r o r  is .05, say, o r  l e s s ,  w e  must r e j e c t  a t  the .!!!I244 l e v e l  of 

s ign i f icance  (s ince 1 - ( .00244)11 = .05) . In t h i s  case exponen- 

t i a l i t v  €s re jec ted  f o r  only two cases. 

Thus 

It is poss ib le  t o  construct  a j o i n t  test of exponent ia l i ty  using 
a! the  time-on-test s t a t i s t i c .  Note t h a t  V = u1 + u2 + ... + un-l , 

where u 's are independent unfform [ O , l ]  random var iab les ,  under the  

assumption of exgonent ia l i ty .  This f a c t  allows us t o  construct  a test 

f o r  exponent ia l i ty  of at2 2 1  sets: 

n 

i 

Ho : a l l  are exponential; 

H1 : a l l  are IHR, with a t  l e a s t  one being 
s t r i c t l y  IHR (i .e. ,  not exponential). 

Suppose t h e  i t h  da ta  s e t  cons i s t s  of n observations; l e t  V be 
i n i s i  
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TABLE 4-2 

TBSTII'?G FOR EXPONEHTIIsL VS. ItIR USIG CUMULATIVE- 
'POTAL-TIME-Ol'I-TIBT STATISTIC 

Conclusion Level of Expected Number Value of 
Test ' ObSerV. S w f i c a n c e  

1 
2 
3 
4 

5 

6 

7 

8 

9 
10 
11 

12 

13 

14 

15 

16 

1 7  

18 

19 

20 

21 

6 

11 

5 

6 

5 

4 
4 

4 

4 

5 

10 

5 

4 

3 

8 

10 

10 
10 

10 
10 

10 

3.86 
7.11 

3.13 
1.90 
1.44 

1.58 
1.02 

1 .'95 
1.88 

2.88 

5.36 

1.09 

1.71 

.90 

5-70 

6.72 

8.38 

3.94 

4.39 

4.32 

2.88 

2.5 

5.0 

2.0 

2.5 

2.0 

1.5 

1.5 

1.5 

1-5 
2.0 

4.5 

2.0 

1.5 

1.0 

3.5 

4.5 

4.5 

4.5 

4.5 

4.5 

4.5 

.015 
-01 

.025 

-80 

. 81 
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rho- c u m u l a t i v e - t o t a l - t i t e e t  statistic f o r  t he  itk data set. men 

21 

is an aggregate statistic, which i f  

21 
% i s  true ia the sum of 

1 (nt-l) independent uniform [ O , l J  random variables and consequently 
i=l 
approximately Normal with e a s i l y  calculated mean and variance, from 
which critical values can be computed. 

l n  l i g h t  of d a t a  set 817 (see Table 4-2),  it  is obvious t h a t  

Considering #17 an o u t l i e r  or an 
l$, : 

al l  exponential must be rejected.  

anomaly, we threw it  ou t  and tested the  hypothesis 

for the  remaining 20 da ta  sets. 

Eo : all exponential 

The test statist ic 

i # l 7  

110 110 

Ho 

I f  Ho is true,  t h i s  is an observation from a Normal (T,  -& dis- 

t r i bu t ion ;  its level of s ignif icance thus equals .002 and is f i rmly 

rejected.  

Barlow (1968) has computed the power c u m  of the  cumulative-total- 

time-on-test s tatist ic when the t rue  d i s t r i b u t i o n  is Gamma with shape 

p a r a e t e r s  between 1 and 5 f o r  an a = .05-level test based on n 10 
observations; see Figure 4-7. Thus, f o r  example, if the  t rue  d i s t r i b u t i o n  

I s  Erlang--5,' the test w i l l  reject exponentiali ty with p robab i l i t y  = 0.69 . 
The cumulative-total-time-on-test s t a t i s t i c  can be applied to  da ta  

with censoring. 

they are eventually withdrawn from test. The withdrawal exposure l e v e l  

is noted and the da t a  thus take the form of f a i l u r e  exposure levels and 

withdrawal exposure levels. 

I f  items are exposed t o  graphi te  f i b e r s ,  but do not  f a i l ,  

The K-S-L approach has no provision f o r  
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. 
1 2 3 4 5 

Shape Parameter of True Gamna Mstribution 

&.ppe 4-7.--Pmer curve for test  of ecuponmtkt us. Canmaa based 
on cumulative-totat-the-on-test s ta t i s t ic .  

handling these types of data. Fortunately, the cumulative-total-time- 

m-test approach handles these types of data eas i ly ;  it I s  just  a matter 
of redefining DiZn , the total-time-on-test between the ( i - l ) s t  and i t h  

fa i lure  levels to  accommodate withdrawals i n  this interval.  And instead 
of computing 7 , w e  compute Vk , where k is  the number of observed n 
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f a i lu re s .  In  view of t h i s  i t  is wry important t o  make t he  d i s t i n c t i o n  

between f a i l u r e  times and times of withdrawal from testing of nonfai led 

items. 

4.2.3 Conclusions 

There are good tests f o r  exponential  vs. LHR, but  it is hard t o  

d is t inguish  between them with small samples. 

pothesis  of exponent ia l i ty  appearing p l aus ib l e  i n  many instances.  

t o  accept exponent ia l i ty  when the  d i s t r i b u t i o n  is IHR is a conservative 

error, exponent ia l i ty  should be used as t he  f a i l u r e  d i s t r i b u t i o n  except 

i n  cases  where knowledge of the  v u l n e r a b i l i t i e s  of the  box allow a more 

de t a i l ed  model which r e s u l t s  i n  another f a i l u r e  d i s t r i b u t i o n  such as 
an Erlang. 

This r e s u l t s  in t he  hy- 
Since 

One unexpected f ea tu re  of t he  da t a  is t h a t  i n  da t a  sets #15 and 

#16, the  case with length 10 mm deviated more from exponent ia l i ty  than 

the  case with length 3 imn. However, t h i s  can be explained by the  ran- 

domness inherent  i n  the  small samples. 

For simulation inputs ,  what is r e a l l y  needed is some upper confi-  

dence bounds on the f a i l u r e  d i s t r ibu t ion  CDF o r  some method of handling 

an estimated d i s t r ibu t ion .  

Incor rec t ly  assuming an exponential  f a i l u r e  d i s t r i b u t i o n  when the  

d i s t r ibu t ion  is ac tua l ly  IHR (e .&,  Erlang-n with n > 1 ) is conservative 

i n  the left-hand ta i l  but op t imis t ic  i n  the right-hand tail. 

the exponential  d i s t r i b u t i o n  with e q u a l  mean exposure t o  f a i l u r e  gives a 

higher probabi l i ty  of f a i l u r e  fo r  low exposure l e v e l s  and a lower prob- 

a b i l i t y  of f a i l u r e  for high exposure leve ls .  

Figure 4-8, which compares the f a i l u r e  p robab i l i t i e s  f o r  exponential, 

Erlang-2, and Erlang-4 d i s t r ibu t ions  with the  same mean value (equal to  

1 here) .  

results f o r  a l l  exposures l e s s  than about 1 . 2  times the mean exposure 

to  f a i l u r e ,  a t  which point the f a i l u r e  Probabi l i ty  is already very high-- 

That is, 

This is i l l u s t r a t e d  in 

Note t h a t  t h e  exponential d i s t r i b u t i o n  gives conservative 
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equal t o  about 0.7. Thus, f o r  t h e  small exposure levels to which actual 
e l e c t t g n i c  equipment w i l l  n ~ r m a l l y  be aubjected after a CF indident,  t h e  

use of an exponential f a i l u r e  model produces s i g n i f i c a n t l y  conservative 

results. 

4 .3  Confidence regions f o r  IHR f a i l u r e  
d i s t r i b u t i o n  

In t h i s  r i s k  study it is c r u c i a l  to  know the r e l a t ionsh ip  between 

exposure level and f a i l u r e  p robab i l i t y  f o r  an ele-trical component. 

Since this f a i l u r e  probabi l i ty  d i s t r i b u t i o n  is estimated from da ta ,  t he re  

is uncertainty involved and confidence regions should be used. 

case an upper confidence bound on the f a i l u r e  p r o b a b i l i t i e s  is needed. 

Typically, there  is a small chance of f a i l u r e  a t  the exposure levels we 

expect t o  encounter, thus w e  are primarily concerned with est imat ing 

(with confidence) the l e f t  t a i l  of the f a i l u r e  d i s t r ibu t ion .  

In  t h i s  

To illustrate t h i s  problem, w e  consider some f a i l u r e  da t a  col- 

l ec t ed  by Westinghouse f o r  a 7.5 KV i n su la to r  pin exposed t o  5 millimeter 

f ibe r s .  Fif teen tests were performed. The f a i l u r e  da t a  are presented 

i n  Figure 4-9 i n  t he  form of an empirical  d i s t r i b u t i o n  function of fa i l -  

ure  probabi l i ty  versus exposure. 

exposure levels up t o  10 
with the extreme l e f t  t a i l  i n  Figure 4-9. 

I n  accidental  releases we expect t o  see 
5 3 f i b e r  sec/m ; consequently, we are concerned 

We would l i k e  t o  estimate f a i l u r e  p r o b a b i l i t i e s  of t h i s  component 
5 f o r  exposures i n  t h e  neighborhood of 10 . 

t o  do t h i s  (See Sections 5.2 and 5.3): w e  can ge t  point estimates based 

on Binomial p robab i l i t i e s .  

an exposure level of 10 

a b i l i t y  of component f a l l u r e  

less than .181." 

simultaneous 95% confidence region: 

There are two classical ways 

The f a c t  that 0 of 15 components f a i l e d  a t  

"Prob-. 5 leads t o  a 95X confidence statement: 
5 

a t  exposure l e v e l  of 10 f i b e r  sec/m3 is 

The other  method is t o  compute a Kolmogorov-Smirnov 
h A 

"F(e) < FU(e) = F15(e) + .304," 
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where P(e) equals the  p robab i l i t v  of f a i l u r e  a t  exposure level e and 

F15(e) 

(The boundary P̂ 

h 

equals the estimate of t h i s  p robab i l i t y  from 15 observed f a i l u r e s .  
* 

of  t h i s  upper confidence region is p lo t t ed  i n  Figure 
U 

4-9. ) 

a b i l i t y  of component f a i l u r e  a t  exposure level 10 

than . 304." 

The Kolmogorov-Smirnov gives  a 95% confidence statement : 
5 3 

"Prob- 

f i b e r  sec/m is less 

Clearly, w e  would l i k e  to g e t  more p rec i se  estimates. This is 
possible. 

ure process, namely, that  it has an increasing hazard rate ( IHR) .  

f a c t  was discussed i n  the context of  t e s t i n g  f o r  exponential f a i l u r e  

laws i n  Section 4.2 .  

It can be done by exploi t ing a physical property of  t he  f a i l -  

This 

L e t  F be the f a i l u r e  d i s t r i b u t i o n  and f its density.  Define 

The func- h(e) = f(e)/(l-F(e)) 

t ion h is  the hazard rate and H is the cumulative hazard o r  l og  sur- 

vival function. I f  the d i s t r i b u t i o n  is IHR, then h is monotone nonde- 

creasing and H is convex. L e t  iu be the  K-S upper bound. I f  w e  

assume an IHR f a i l u r e  d i s t r ibu t ion ,  then a 95X confidence region f o r  
w i l l  consis t  of a l l  I H R  di-s t r ibut ions bounded by ? . It turns  out t h a t  

there exists a maximal I H K  d i s t r i b u t i o n  @ among a l l  d i s t r i b u t i o n s  

bounded by FU : L e t  HU=-log(l-FU) and HU,Im be the geatest  con- 

vex minorant of H (plot ted Figure 4-10, then 

and H(e)  = Jde h ( t ) d t  = -log(l-F(e)). 

F 

U 

u, I H R  
n n n A 

n n 
= 

'us I H R  u 

1 .  If F' is IHR and F' 5 f , then F' Pu,IHR . U 
1 - ex& u, I H R  - 

A 95% confidence region 

da ta  of Figure 4-9. 

F 2 is indicated i n  Figure 4-11 f o r  t h e  

- 4 3  - 
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Pigwe 4-9.--EngSrioaZ CDF and 95% K-S upper bound; 7 . 5  KV 
insulator pin, 5 mm fibers, We8tinghouse datu. 
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Note t h a t  Figure 4-11 is a much more accurate region, e spec ia l ly  

i n  the l e f t  tail. 
model, namely, an IHR f a i l u r e  d i s t r ibu t ion .  

ered exposure level of 10 f i b e r  sec/m3, we are 95% conf2dent the: :he 

probabi l i ty  of  f a i l u r e  ie less than .0048. 

over the  o the r  esthates. 

This accuracy was gained by assuming a more r e s t r i c t e d  

For the  previously consid- 

5 

This is g rea t  Lmprovement 

4.4 S e u s i t i v i t y  of the  model t o  estlmated 
parameters e r  li d i s t r i b u t i o n s  

We have wr i t t en  a s p e c i a l  simulation program designed t o  provide 

f a s t  and economical s e n s i t i v i t y  analyses of t he  r i s k  p r o f i l e s  obtained 

as output of t he  GFRAP r i s k  analysis.  

modified 

dence bounds on the r i s k  p r o f i l e s  obtained. 

put the probabi l i ty  d i s t r i b u t i o n s  of damage pe r  accident a t  each o f  the 

major a i r p o r t s  being considered, and we used a n a l y t i c  aoproximations t o  

the empirical damage d i s t r i b u t i o n s  reported by Arthur D. L i t t l e ,  Inc. 

(ADL) i n  Kalelktir, et a2. (1979). We have performed an extensive series 
of s e n s i t i v i t y  runs of the program, and of an addi t ional  computer prog- 

ram wr i t t en  t o  provide p a r t i a l  ana ly t i c  results when the ana ly t i c  ap- 

proximations j u s t  mentioned take the form of Lognormal d i s t r ibu t ions .  

This sect ion describes the simulation program, d e t a i l s  our e f f o r t s  t o  

anal): Lcally approximate the d i f f e r e n t  a i r p o r t  damage d i s x i b u t i o n s ,  and 

f i n a l l y  presents the results of the s e n s i t i v i t y  runs. 

Moreover, t h i s  program follows d 

simulation approach which y i e lds  s t a t i s t i c a l l y  va l id  confi- 

The program requires  as ia- 

4.4.1. The simulation program 

For ease i n  handling simulation e r r o r  ( t o  be discussed i n  Section 

5.1) w e  recommend the following procedure f o r  the simulation: 

Step 1: Generate by Monte Carlo methods the number of accidents 
i n  a year. 

Stel 2: Determine by Monte Carlo methods a t  which a i r p o r t  each 
of the accidents generated i n  Step 1 occurs. 
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Step 3: 

Step 4: 

Step 5: 

Step 6A: 

Step 6B: 

For each accident,  determine the cost .  

Total  t he  cos t  of a l l  the  accidents  f o r  the year. 

Repeat the  above four s t eps  n times (yielding a 
sample s i z e  of n years). 

Compute the empirical  na t iona l  annual r i s k  p r o f i l e  
d i r e c t l y  f o r  the sample of 
values. 

n years  from the Step 4 

Compute the empir ical  national c o n d i t i m a l  (given 
one accident) r i s k  p r o f i l e  d i r e c t l y  for the  sample 
of n years' worth of accidents  from t h e  Step 3 
values. 

We have followed t h i s  procedure in our special ized simulation program, 

and w i l l  now g<ve the  e s s e n t i a l  d e t a i l s  of t h a t  program, r e fe r r ing  

appropriately t o  t h e  s t eps  above. 

I n  Step 1 we assume t h a t  the  number of accidents  i n  a year  is a 

random var iab le  f o l l w i n g  a Po.sson d i s t r ibu t ion ;  thus only the  mean 

of t h a t  d i s t r ibu t ion  is required as an input quant i ty .  

t i o n  of a Poisson d i s t r ibu t ion  seems t o  be generally accepted, and there  

are some theore t ica l  baser fo r  It, o ther  d i sc re t e  d is t r ibu t ion8  )r a more 

complex re la t ionshlp  could be accommodated by t h e  program without s lgn i f -  

i can t  a l t e r a t ion .  For example, the mean p of the  Poisson d i s t r i b u t i o n  

could be t rea ted  as ti random variable  r'ollowing a spec i f ied  probabi l i ty  

d is t r ibu t ion .  

i: 

While the assump- 

In Step 2 i t  is assumed t h a t  each accident occurs a t  o r  i n  thc 

v i c i n i t y  of one of a given number, say N , of a i rpo r t s .  Each of these 

ie characterized by a probabi l i ty ,  say P f o r  a i r p o r t  i , t h a t  an 
a 

i 

accidents  occurring a t  one of t h e  N a i r p o r t s  i n  f a c t  occurs at a i r p o r t  a 

i . That is, Pi - Prob(accident occur a t  a i r p o r t  i I i t  occurs a t  one 

of the Na a i rpo r t s )  . These p robab i l i t i e s  per ta in  to  every simulated 

accident,  regardless  of the a i r p o r t s  L t which other  simulated accidents  

occur; i . e . ,  the various accidents are t rea ted  ?.ndependently with respect  
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to where they occur. The numerical values of the Pi ( i=I , . -* ,Na)  ate 

based on h i s t o r i c a l  data (and possibly on fu tu re  project ions as w z l l )  

per ta ining to the weather cadi t ions  and numbers of operationa at the 
variour: a i rpo r t s .  

Step 3 is the critical One and must be  dependent on the simulation 

model used t o  generate the  random c o s t s  of accidents  t h a t  take place at  

each of the .a a i rpo r t s .  Such a model must be r a t h e r  complex i n  order  

to  account f o r  various types and locat ions of accidents,  

under local weather conditions, local types and q u a n t i t i e s  of housing and 

industry, etc. 

s i g n i f i c a n t  aspects  of the  GFRAP, and both ADL and ORI have expended 

considerable e f f o r t  t o  t h i s  end. Our special ized simulation program 

therefore  requires  the inclusion of subroutines that generat t  random 

values of accident cos t  t h a t  are s o l e l y  dependent on the a i r p o r t  con- 

cerned. For the  sake of fu tu re  reference,  le t  F denote the  CDF of 

the damage (cost)  per accident at a i r p o r t  i , i=l, ..., N . To test our 

simulation program and t o  obtain s e n s i t i v i t y  r e s u l t s  we had to make some 

s p e z i f i c  choices f o r  the 

Section 4.4.2. 

CP dispersion 

Indeed, t h e  development of such a model is one cf t h e  most 

d i  

a 

Fdi . What we did is described below i n  

Steps 4 and 5 are self-explanatory and require  no comment. Steps 

6A and 6B are ca r r i ed  out by constructing, i n  each case, an aggregated 

r e l a t i v e  frequency d i s t r ibu t ion  and then converting t h i s  t o  the aggre- 

gated complementary cumulative relative frequency d i s t r i b u t i o n  t h a t  con- 

s t i t u t e s  &he empirical r i s k  prof i le .  

used t o  construct the aggregated d i s t r i b u t i o n s  are specif ied as input t o  

the program. It would not be prac t i ca l ,  fo r  l a rge  sample s i z e s ,  t o  save 

a l l  the observed values because of t h e i r  number and the compztational 

cost  of ordering then ( there  are n observed values t h a t  en te r  i n t o  

Step 6A and approximately 

The f i r s t  four moments of the empirical  d i s t r i b u t i o n s  are computed from 

the actual observed values. 

The iiumber and s i z e  of t he  cells  

ny observed values t h a t  en te r  i n t o  Step 6B). 
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4.4.2 Approximating the ' a i r p o r t  
damage d l s t x i b u t h n s  

The only information that has been ava i l ab le  about a i r p o r t  dam- 
age d i s t r i b u t i o n s  is t h a t  contained in Table 10-1 of Italelkar, et  at. 
(1979). 

and current damage d i s t r i b u t i o n s  have associated with them s i g n i f i c a n t l y  

smaller damage values. As such results were not ava i l ab le  when our pro- 

gram was developed and when our  s e n s i t i v i t y  runs were made, and are still  

not r ead i ly  avai lable ,  we baaed our work on the empirical  damage d i s t r i -  

butions presented i n  ADL's Table 10-1. 

26 d i f f e r e n t  a i r p o r t s  are based on 300 values each generated by the  ADL 

daeage simulation model. 

Recent results of both ADL and ORI i n d i c a t e  that more accurate 

The d i s t r i b u t i o n s  given t h e r e  f o r  

For each of the  26 d i s t r i b u t i o n s ,  ADL's Table 10-1 provides the  

mean, the  standard deviation, the minimum and maximum observed values,  

and the following percent i les :  5th,  l o th ,  25th, 50th, 75th, 9Oth, and 

95th. All t h e  minima are zero, as are many of  the 25th percent i les .  

Using the  given percent i les ,  w e  p lo t t ed  a l l  26 d i s t r i b u t i o n s  on log-lung 

paper i n  the form of r i s k  p r o f i l e s  (complementary OF'S). 

t h a t  f o r  Washinston, D.C.'s National Airport ,  is shown i n  Figure 4-12. 

The right-hand port ion of the curve is shown as a dotted l i ne  t o  empha- 

s i z e  the f a c t  t h a t  t h i s  portion is heavily dependent upon the maximum 

value observed and s a i d  maximum might vary s i g n i f i c a n t l y  among samples 

of size 300. (We associated with the maximrrm value a r i s k  probabi l i ty  

of 1/3QO. > 

One of these,  

We considered using piecewise-linear approximations t o  the observed 

d i s t r i b u t i o n s  i n  Step 3 of our simulation program, but  decided against  it 

f o r  two reasons. F i r s t ,  and most important, t h i s  would not provide us 
with a convenient mechanisn f o r  performing s e n s i t i v i t y  analyses through 

control led changes i n  the damage d i s t r i b u t i o n s  used i n  Step 3. Second, 

the smooth form of the curve i n  Figure 4-12 ( and of the  ones for d t h e t  

a i r p o r t s )  suggests t h a t  a piecewise log-log o r  log-linear approximation 

might be more appropriate. 

proximations t o  the observed damage d i s t r ibu t ions .  

We therefore  concentrated on a n a l y t i c  ap- 
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Bnnrninatioa of the 26 empirical  d i s t r ibu t ions  i n  Table 10-1 of 

Kalalkar e t  02. (1979) shows them to be considerably skewed to the right; 
the  coef f ic ien ts  of variation range from 1.33 t o  3.40 and the  ratios af  

mean to median range from 1.32 to 133. We therefore  considered several 
families of d i s t r ibu t ions  which possess the charac te r ie t ica  of skewness 
to  r i g h t  and nornegativity (of the associated random variable). Such 

famil ies  include the  Weibull, Gamma, Pareto, and Lognormal famil ies  [see 

Ham e t  at. (1974)). 

fluenced by the manner i n  which we decided to  f i t  the empir ical  d i s t r i -  

butions and ver i fy  the adequacy of the  f i t .  W e  wanted t o  determine the 

two parameters oE the  theore t ica l  d i s t r ibu t ion  from the  mean and standard 

deviation of the  empirical  one, and then to compare the  two r i s k  prof i les .  

"his is d i f f i c u l t  to do with the  Weibull and Gtnmna d i s t r ibu t ions  for the  

following reasons: 

f ind d i r ec t ly  the two parameters as closed-form functions of the  empirical  

mean and standard deviation; a nonlinear equation involving the Gamma 

function must be solved. In  the case of the Gamma d i s t r ibu t ion  one cannot 

obtain the  CDF i n  closed form so calculat ion of the theore t ica l  r i s k  pro- 

f i l e  is extremely d i f f i c u l t .  

Our c h d c e  of famil ies  to  examine was par t ly  in- 

I n  the  case of the Weibull d i s t r ibu t ion  one carmot 

Both the Lognormal and Pareto d is t r ibu t ions  f i t  our computational 

requirements, and examination of the 26 corresponding Lognormal r i s k  

p ro f i l e s  showed many of them t o  f i t  the empirical  r i s k  p r o f i l e s  reason- 

ably w e l l .  The Pareto d i s t r ibu t ion  was t r i e d  f o r  severa l  cases but did 

not f i t  q u i t e  as w e l l  as the  Lognormal. 

Fer the purposes of t e s t i n g  the simulation program w e  therefore  

decided t o  use Lognormal d is t r ibu t ions  with means and variances equal t o  

those of t h e  empirical d i s t r ibu t ions .  

representative se lec t ion  of t h e  corresponding r i s k  prof iles--the ADL 

empirical ones and the Lognormal ones used t o  f i t  them. 

Figures 4-13 through 4-21 show a 

We did not close the door on attempts t o  f i t  the  empirical d i s t r i -  

butions; as  a next s t ep  w e  examined the poss ib i l i t y  of f i t t i n g  the empir- 

i c a l  d i s t r ibu t ions  by mixtures of Lognormal d is t r ibu t ions .  That I s ,  
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A 

ins tead  of approximating the  empirical  CDF Fdi f o r  a i r p o r t  i by a 

hgnOr~~al  CDF Fgi , w e  approximated i t  by t h e  convex combination of 

Lognormal CDF’s 

where each F is a Lognormal CDF, each Ii is a small pos i t i ve  

in teger  such as 2 o r  3 (or  even l), the  q are pos i t ive ,  and 1 q 

1 . 
rcij 

i j  5 i j  
A d i f f i c u l t y  with t h i s  approach is t he  lack of a clear c r i t e r i o n  t o  

Ii , the  q , and the Ftij . Even with a clear 
i j  

we i n  choosing 

c r i t e r i o n ,  the  computational e f f o r t  would be considerable. There is no 

doubt, however, t h a t  decidedly b e t t e r  f i t s  could be obtained t h i s  way. 

Figures 4-22(a) and 4-22(b) show f i t s  to  the  Philadelphia a i rpo r t  r i s k  

p r o f i l e  by a s ing le  Lognormal and by a mixture of two Lognormals, re- 

spect ively;  the parameters i n  the case of t he  mixture were found heu- 

r i s t ica l ly .  The improved f i t  is readi ly  apparent. Figures 4-23(a) and 

4-23(b) show similar f i t s  t o  the  Los Angeles a i r p o r t  r i s k  prof i le .  

An i n t e re s t ing  r e s u l t  is t h e  following: Let F be the na t iona l  

conditional (given one accident) CDF whose corresponding risk p r o f i l e  is 

estimated i n  Step 6B of the specialized simulation program. I f  each CDF 

Fdi is  assumed t o  be Lognormal, say FRI , then 

so t h a t  F is a mixture of Lognormals. I f  instead each Fdi 5s 

assumed t o  be the mixture of Lognormals 1 q F , then 
j 13 a i j  

so t ha t  F is again a mixture of Lognormals. 

- 62 - 
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Because the empirical d h t r i b u t i o a s  giwea ia Table 10-1 of 
Kalelkay, et ab. (19f9) were kwwa to be outdated, we decided against 
amy f u r t h e r  attempt to f $ t  them with a n a l y t i c a l  d i s t r ibu t ions .  We 

decided to use 26 Logno@ dbtributiona ~ 5 t h  the eaue maaas and vari- 
e e s  as those of the emplricat d f s t r i b u t i o n s  8s the basis of our sen- 
s i t i v i t y  &pes. We did, howewer, investigate the effect of replacing 

t&e Lognormal d i s t r i b u t i o n s  by m i x t u r e s  of Lognormal d i s t r ibu t ions .  

Exactly what was done w i l l  be de ta i l ed  below, but  the r e s u l t s  may be 

summarized by the statement that replacing the  Lognormel d i s t r i b u t i o n s  

by mixtures of bgnolcleal d i s t r i b u t i o n s  had a neg l ig ib l e  e f f e c t  on t he  

national condi t iona l  and annual r i s k  p r o f i l e s  obtained, even though the  

migture of L o p r m a l ~  ygelds a b e t t e r  f i t  of t he  individual  a i r p o r t  dam- 

=e d i s t r ibu t ions .  

4.4.3 me s e n s i t i v i t y  analyses  

Following the  ADL analyses w e  used Na = 26 and used f o r  the  pi 

the values given i n  the  last  column of Table C-4 of Kalelkar sf at .  
(1979). 

have means and standard devia t ions  equal t o  those of t he  empirical dis-  

t r i bu t ions  generated by ADL, and w e  set p = 2.6 . This parameter p 

is t he  expected number of accidents  i n  a year, and the  value of 2.6 cor- 

responds to the  agreed-upon pro jec t ion  f o r  1993. 

For our base case we chose the  26 Lognormal d i s t r i b u t i o n s  to 

Because of the  assumption of Lognormal d i s t r ibu t ions  of damage 

per accident  a t  the  various a i r p o r t s ,  t he  na t iona l  condi t ional  r i s k  

p r o f i l e  (given one accident)  is t he  complementary cumulative d i s t r ibu -  

t i o n  function (CDP) of a mixture 

F =  

where Pai is the Loglnormal CDP 

of Lognormal CDF's. That is, 

N a 

of damage per  accident at a i r p o r t  i 

and & = (1-F) 

acc ident ) .  

is the na t iona l  conditfonal r i s k  p r o f i l e  (given one 

It is thua possible  t o  compute the values of the r i s k  
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pmfile R exactly w i t h  the aid of a table or cmputer program that pro- 

wide0 CbB Pafrms of the etat#lnrd aQrmal diet t ibutSon.  

fer eha anw& . r b k  pmOUe, hewever.) A separate coaptiter program psaar 

therefore written tB compute It t h i s  way, aa8 it wa6 used in adddi t ion  

to check the correapmlhg risk profiles generated by the Monte Carlo 
simulation progran (which generates both r i e k  prof i les ) .  

(.WAS I s  not true 

The amual r i s k  profiles f o r  varbue s e n s i t i v i t y  runs were gen- 
erated by the simulation program; in each case the year 1993 w a s  simu- 
lated 40'00 tfmee. 

We performed three separa te  types of s e n s i t i v i t y  analyses. 

the first ,  we var ied  the mean6 of t h e  Lognormal d i s t r j b u t i o n s  of damage 

per accident  at the  various airports and kept the standard devia t ions  

the same. In t he  s e a d m  we varied the  s tandard devia t ions  of the Log- 

normal d i s t r i b u t i o n s  of damage pe r  accident  a t  the  var ious airports and 

kept t he  means t he  same. I n  both cases a l l  26 means or standard devicr 

tions w e r e  changed by t h e  same percentage. In the  t h i r d  type o f  sensi- 
t i v i t y  ana lys i s  we var ied  p 

This t h i r d  type of s e n s i t i v i t y  ana lys i s  a f f e c t s  the annual r i s k  p r o f i l e  

but not the  national condi t ional  r i s k  p r o f i l e  (given one accident) ,  

whereas the  f i r s t  two types a f f e c t  both r i s k  p ro f i l e s .  

In 

t he  mean number of accidents  i n  a year. 

The results are shown i n  Figures 4-24 through 4-28. Figures 

4-24 and 4-25 show the na t iona l  condi t iona l  r i s k  p r o f i l e s  B 
changes i n  ' the means (Figure 4-24) and standard deviat ions (Figure 4-25) 

of the  d i s t r i b u t i o n s  of damage per  accident  a t  each a i rpo r t .  

p r o f i l e  is i d e n t i f i e d  by the  ratio of t he  value of t he  parameter (mean 

or standard deviat ion)  to  its value i n  the  base case. 

f o r  var ious 

Each r i s k  

Tables 4-3 and 
4-5 show numericalLy some of the  results shown graphical ly  i n  Figures 

4-24 and 4-25; no exact  values are given s ince  they are not l i k e l y  to  be 

t r u l y  meaningful, bu t  instead r a t i o s  are given to ind ica t e  the  e f f e c t s  

of t he  change i n  means o r  standard deviat ions of the  d i s t r i b u t i o n s  of 

damage per accident at each a i rpo r t .  

of the  means and standard deviat ions of t he  na t iona l  condi t ional  r i s k  

Tables 4-4 and 4-6 show the  r a t i o s  
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Pigure 4-24.--Natbnat conditiona2 r i s k  pofi le  R w i t h  changes in the m e m  of 
t k  airport damage d ~ s t r i b u t w n s  (26 a i~por t s ) .  
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,[ 1 EX: The ratio of the airport damage -i&!..d-!.1.! 
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TABLE 4-3 

SENSITIVITY OF THE NATIONAL CONDITIONAL RISK PROFILE R TO 
CHANGES IN TEE MEANS OF TEE AIRPOW DAMAGE DISTRIBUTIONS 

KEY: A l l  entries in the table are ratios of 
(1) the values obtained when the means 
are changed to (2) the corresponding 
values for the base case. The ratio of 
airport damage distribution mean to 
that of the base case is r and d is 
a numerical damage value. 

(a) Damage Value d 
P{Damage > d) r = 0.5  r = 1.5 r = 2.0 r = 3.0 

.31 

.45 

.52 

.62 

.75 

.84 

1.00 
1.04 

1.20 

1.87 

1 .53  
1.30 
1.21 
1 .13  
1.07 

1.06 

91 

83 

2.69 
2.07 
1.60 
1.39 
1.20 

1.10 
1.06 

81 . 72 

4.06 
2.98 
2.06 
1.63 
1.31 

1.12 
.88 
.69 

.60 

(b) P h m g e  d )  
Damage Value d r = 0.5 r - 1.5 r = 2.0 r = 3.0 

. 50 1.36 1.53 1.65 -03 x 10 

.42 1.65 2.21 2.81 0 1  x 10 

.42 1.76 2.76 4.33 . 3  x 10 

.46 1.53 2.21 4.00 1 .  x 1 0  
3 XQO6 .65 1.30 1.50 1.95 

10 x lo6 1.07 79 .48 .23 

6 
6 
6 
6 
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TABLE 4.04 

SENSITIVITY OF TEE NATIONAL CONDITIONAL RISK DISTRIBUTION TO 
CHANGES I N  THE MEANS OF TEIE AIRPORT DAMAGE DISTRIBUTIONS 

KEY: All entries i n  the  t a b l e  are r a t i o s  of 
(1) the  values obtained when the  means 
are changed t o  (2) the  corresponding 
values for the  base case. The r a t i o  of 
a i r p o r t  damage d i s t r i b u t i o n  mean t o  
that of the  base case is r . 

Mean of the  National Standard Deviation of the 
Ratio r Conditional Risk National Conditional Risk 

Dis t r ibu t ion  D i s  tr ibu t  kon 

0 33 
.50 
.67 
1.5 
2.0 
3.0 

.33 

.50 
67 

1. so 
2.00 

3.00 

.97 

.98 

.98 
1.04 
1.09 
1.23 
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TABLE 4-5 

SENSITIVITY OF 'IBB NATIONAL CONDITIONAL RISK PROFILB 

AIRPORT DAMAGE DISTRIBUTIONS 
R TO CKANGBS IN TEE STANDARD DEWATIONS OF TEE 

KEY: All entries in the table are ratios of 
(1) the values obtained when the stan- 
dard deviations are changed to (2) the 
corresponding values forthebase case. 
The tatioof airportdamagedistribution 
standard deviation to that of the base 
case is r and d is a numerical dam- 
age value. 

(ul Damage Vutue d 
PtDamage > d) 1: 0 0.5 r - 2.0 r - 5.0 r = 10.0 

3 x lo-l 
1 x 10-1 
3 x 

1 x 

3 
1 
3 
1 
3 10'~ 

1,23 
.92 
.79 
.72 
.60 
.52 
.47 
.41 
.38 

.GO 
84 

1.06 
1.33 
1.49 
1.64 
1.87 
2.03 
2.38 

.35 

.65 
1.04 
1.56 
2.02 
2.59 
3.41 
4.14 
5.48 

.19 
44 
.89 

1.44 
2.23 
3.12 
4.53 
6.04 
a. 33 

(b)  PIDmage dl 
Damage Value d r * 0.5 r - 2.0 r * 5.0 r = 10.0 

1.27 .76 .55 .41 .03 x 10 
.1 x lo6 1.30 .74 .54 .40 

6 

. 3  x lo6 .86 85 .68 54 
1 x lo6 51 1.34 1.34 1.19 
3 x lo6 .21 2.13 2.99 2.99 
10 x lo6 -03 3.86 8,48 10 98 
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- 
Mean of the Matioslel Standard Deviation of the 

Ratfo r Conditional Risk National Conditional Risk 
Distribution Distribution 

0.5 1.3 55 
1 2.0 1-95 
I 5.0 A.U 4.84 

10.0 1.0 9.68 I 

KEY: All entries In the table are ratios of 
(1) the values obtoiaed when t k  stall- 
dard dewiatfaas are changed to (2) the 
cerrespoed~ values for thebase case. 
The ratio of airport damage distribution 
8-d deviation to that of the base 
casefs r .  
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p r o f i l e  R to those of the base case when the indicated changes are 
=.de fn the means (Table 4-4) or atandard davfatlons (Table 4-6) of  the 

individual airport damage d i s t r ibu t ioae .  

P-es 4-26 d 4-27 are comparable to  Pi- 4-26 and 4-25, 
respect ively,  but are for the anma1 risk profile, call it S , instead. 

Tables 4-7 through 4-10 show the results numerically, and are comparable 
to  Tables  4-3 through 4-6* r apec t iwe ly .  

Figure 4-28 shows the changes i n  the annual r5sk p r o f i l e  S as 

1.1 changes; note  t h a t  increa.ring values  of 1.1 produce increas ingly  

conservative annual risk p r o f i l e s  as defined later. 
numerically some of the r e s u l t s  shown graphical ly  i n  Figure 4-2 ; again, 

only ratios are given. 

standard devia t ions  of the annual r i s k  p r o f i l e  S 

case. when the  indicated changes are made i n  1.1 . 

Table 4-11 shows 

Table 4-12 shows the ratios of the m e a n s  and 

to those of t h e  base 

4.4.4 Investigation of the  e f f e c t  of 
approximating the airport 
damage d i s t r i b u t i o n s  by 
lognonoal d is t r ibu t ioar .  

As indicated above, t he  empirical  individual  a i r p o r t  damage d is -  

t r i bu t ions  are b e t t e r  f i t  by mixtures of Lognormal d i s t r i b u t i o n s  than 

by a sllgle Lognormal d i s t r ibu t ion .  We wished t o  see whether using such 

b e t t e r  approximations to the a i r p o r t  damage d i s t r i b u t i o n s  would s i g n i f i -  

can t ly  alter the r e s u l t s  of t he  s e n s i t i v i t y  analyses. 

tical t o  car ry  out t he  process of f i t t i n g  a l l  26 empirical d i s t r i b u t i o n s  

by mixtures of Lognormal d i s t r ibu t ions ,  so w e  decided to  proceed d i f f e r -  

ent ly .  We assumed, i n  e f f e c t ,  t h a t  there  are only 13 a i r p o r t s ,  a l l  of 

whose damage d i s t r i b u t i o n s  can be f i t  by mixtures of two Lognormal d is -  

t r ibu t ions .  This y ie lds  26 Lognormal d i s t r ibu t ions  in al l ,  which we 

took t o  be the  ones u t i l i z e d  f o r  the base case described above I n  Sec- 

t i on  4.4.3. That base case becomes, in terms of the  13 f i c t i t i o u s  air- 
por t s ,  the  most exact representat ion ava i lab le ,  in t ha t  each of t h e  

It w a s  not prac- 
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TABLE 6 . 7  

KEY: All e~tries in the table are ratios of 
(1) the values obtnined when the mean6 
arechanged to (2) the correspondinq 
value6 for the base case. The ratio of 
atLport  damqe distr ibut ion amm to 
c a t  of thebase w e  is r and d is 
a -mrLcal damage value. 

(a) DamqeVcrZusd I Pbamage > d3 r = 0.5 r = 1.5 r = 2.0 r = 3.0 

3 x lo-' . 38 1.75 2.52 3.87 

1 x 10-l . 46 1.54 2.0? 2.89 

3 x lo-2 .59 1.35 1.76 2. $5 

. 69 1.22 1.53 lob9 

. 79 1.08 1.26 1.48 

. 99 1.06 1.15 1.27 

(b) PClkvnage dl I Damage Value d r = 0.5  r = 1.5 r = 2.0 r - 3.0 

.03 x lo6 .76 1.10 1.13 1.13 
-52 1.17 1.26 1.38 .1 x 10 
.41 1.53 1.97 2.56 . 3  x 10 

1 x lo6 .34 2.11 3.32 5.92 

3 x lo6 .54 1.46 3.34 7.80 

6 
6 
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KBP: A l l  entriae In the table are ratios of 
(1) the valuee ob+ainnd when the meam 
arechangedto (2) thecorrespozuiiag 
waluee for the base case. The ratio of 
airport damage distr ibut ioa  mean to 
that of the base case is r . 

Standard Deviation 
of the Annual Risk 

DSs trlbutlon 
Of *' Annual 

I: Bisk Distribution 

. 33 .33 

. 50 . 50 

. 67 -67 

1.5 1.50 
2.0 2.00 

3.0 3.00 

-92 

.93 

.95 
1.10 

1.22 

1.53 
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Iusp: A1p en- ia the table are ratios of 
(1) the valuee obtained &en the sfan- 
dard dePiatioas are ciuuqpd to (2) the 
correepmdhg values for the base case. 
The ratin of aSrport damage d2stribution 
staudard deviation to that of the bese 
case38 It and d isanumecLcddrm- 
age d u e .  

la) Amage Vatm d I Pbmage > d} r = 0.5 r = 2.0 r - 5.0 r = 10.0 

3 x 10-l 1.02 . 71 . 47 0 3 4  
1 x 10-l .89 .95 . 78 . 62 
3 x . 81 1.17 1.17 1.10 

1 x . 72 1.31 1.52 1.71 

3 x . 62 1.58 2.05 2.58 

1 x IO+ . 54 2.00 4.06 6-00 

(bl P ~ ~ e  > dl 
Damage Value d r = 0.5 r = i . 0  r = 4.0 r = 10.0 I 

1.10 .95 . 74 . 61 
1.16 .81 .61 . 50 

1 x lo6 .85 1.12 1.00 . 85 
3 x lo6 .1.8 2.00 2.47 2.62 

6 
6 

.03 x 10 
01 x 10 
.3  x lo6 1.03 .76 . 59 047 
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l&n Of the of the Annual Biek 
Mstrfbution Ratio Bisk Dfstribution 

0.5 1.0 
2.0 1.0 
5.0 1.0 
10.0 1.0 

. 61 
1.87 
4.58 
9.14 
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KEX: A l l  enMee b the table ere ratios of 
(1) thevalaes obmiiied *en theex? 
pected numberof accidents ia a year is 
dmn$edm (2) the corrcrspoadin% value6 
for the base case. ¶'he ratb of the 
expected numberof accidents to that of 
thebasecaseis r and d iaanumer- 
ical damage value. 

la) lkamage Valued I P{Damege > d) r - 0.50 'I: = 0.67 r = 1.5 r = 2.0 

039 -61 1.51 2.12 
1 x 10-l . 53 . 67 1.36 1.83 
3 x lo-2 . 59 . 73 1.29 1.67 

3 log3 -61 . 76 1.19 1.48 
1 lo'' . 6C .81 1.25 1.47 

1 x lo-2 -62 . 74 1.23 1.52 

(b) P b m g e  dl i m g e  Val- d r = 0.50 r - 0.67 r = 1.5 r = 2.0 

-03 x lo6 . 69 .82 1.11 1.20 
.54 -70 1.23 1.38 
45 . 51 1.52 1.97 

1 x lo6 . 40 . 55 1.69 2.85 
3 x lo6 .28 .49 1.62 2.75 

6 
6 

-1 x 10 
. 3  x 13 
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TABLE 4-14 

KEY: All entries ia the table are ratios of 
(1) theval- obtained rohen tBe ex- 
pected numberof accfdeats In a year 3.s 
changarl to (2) the C o r r e s p o r a d ~  values 
for the base case. The ratio of the 
expected numberof accidents to that of 
thebasecaseis r .  

standard Deviation 
of the ~nrmnl R I S ~ ~  

Mirtribution 
- Of the Amnrnl 
Bisk Distribution 

0.50 .50 . 71 

0.67 .67 . 82 

1.5 1.50 1.22 

2.0 2.00 1.41 
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13 damage d i s t r i b u t i o m  is represented by a mixture of two Lognormal 
dis t r ibu t ion& 

We then approximated each of the  13 d&ge d i s t r i b u t i o n s  by a 
single Lognormal d i s t r ibu t ion .  

the 26 Lognormal d i s t r i b u t i o n s  to obtain 13 pa i rs .  

we found the  f i r s t  two moments of t he  mixed d i s t r i b u t i o n  (with mixing 

p r o b a b i l i t i e s  proport ional  to  the appropriate  p i ) ,  and then approxi- 

mated the adxed d i s t r i b u t i o n  by a single Lognormal d i s t r i b u t i o n  wi th  

the gfven f i r s t  two moments. 
the damage d i s t r i b u t i o m  at t he  13 f i c t i t i o u s  a i rpo r t s .  

To do t h i s  we f i r s t  randomly combined 

For each such p a i r  

"hie yielded Lognormal approximations for  

U s i n g  t he  13 Lognormal d i s t r i b u t i o n s  w e  exercised die two computer 

programs discussed above f o r  the base case and also f o r  a l l  of t h e  sensi- 

t i v i t y  ana lys i s  runs previously described f o r  t he  case of 26 a i r p o r t s .  

The r e s u l t s  are sh- ~n Figures 4-29 through 4-33, which corre- 

spond to  Pigures 4-24 through 4-28, respect ively.  

respond, but i n  each of the f i v e  cases the two sets of curves are al- 

most carboa copies. That is, with respect to the  scenario of 13 air- 
por t s ,  approximations of t he  13 a i r p o r t  damage d i s t r i b u t i o n s  by (a) 

Lognormal d i s t r i b u t i o n s  and by (b) mixtures of two Lognormal d i s t r ibu -  

t i ons  produce almost exac t ly  the  same r e su l t s .  

c r e d i b i l i t y  t o  the  v a l i d i t y  of the  s e n s i t i v i t y  ana lys i s  results obtained 

f o r  t he  scenario of 26 a i rpo r t s .  

Not only do they cor- 

This c e r t a i n l y  lends 

Those r e s u l t s  w i l l  now be discussed. 

4.4.5 

This 

Discussion of t he  r e s u l t s  
of the  s e n s i t i v i t y  
a m l y s e s  

tscussion is divided i n t o  t..ree par t s ,  corresponding t o  

changes In (a)  the means of the a i r p o r t  damage d i s t r ibu t ions ,  (b) t he  

standard deviat ions of t he  a i r p o r t  damage d i s t r i b u t i o n s ,  and (c) the 

expected number of accidents  i n  a year. 

through 4-12. 

It is based on Tables 4-3 
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1 

lo-* 

F i v e  4-2fi.--Nationa7. conditional Ask profile R w i t h  changes in the mans of 
tAe airport dumage d~ktrYibuL’ions ( 3  3 a irpor ts ) .  
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Figme 4-31.--AnnwzZ r i s k  profile S wi th  ckmges i n  the mems of 
the aimort damage d i s t r ibu t ions  (1 3 airports). 
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d 4  

10- 

10- 

10- 

?-09 

10- 

F@@e 4-32--AnnwzZ ~ L s k  profile S w i t h  chunges in *he strmcEard deviations 
of !.be aizyort dumage distributions ( 1 3  airports).  
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KEY: The ratio of the  exp 
of accidents i n  a ye 
of the baee case is 

10 I I----.- .-&I--&- 

F<brtre 4-33.--Annual risk p r o f i l e  S wi th  changes i n  the expecte’  
number of accidents  in a year ( 1 3  a i r p o r t s ) .  
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.Tablea 4-4 aad 4-8 qiuw that when the memm of all the airport 
dtima8e dis t r lbu t lone  are a e d  in rhe wane proportion, tben the means 
of the natlonal coaditt-1 aad annual dama~e d h t r i b u t i o n s  are chaq@ 

h that saae praportion but the standard deviations of these two d i e t r l -  

buttoms are changed to a much smaller degree. 

of the  annual damam d i s t r ibu t ion  is changed somewhat more than that of 

thc national conditional damage d is t r ibu t ion .  

rjsk prof i?  +. Tables 4-3 and 4-7 can be summarized hy statingl that tbe 

damage value ( for  a given exceedence probabi l i ty)  and the  exceedence 
pr.-bability ( for  a given damage value) are both changed ia roughly the  

eame proportion as the change i n  the  means of the airport damage dis- 

I s  t r ibut ions.  

The standard devia t lou  

W%th respect  to the two 

Tables 4-6 and 4-10 show t h a t  when the standard d e d a t i o n s  of a l l  

the a i rpo r t  damage d i s t r ibu t ions  are changed in the  same proportion, 

then the  means of the  two damage d i s t r ibu t ions  are unchanged, whereas 

both t h e i r  standard deviations are changed i n  almost (but s l i g h t l y  less 

than) that same proportion. 

Tables 4-5 and 4-9 ind ica te  that ,  in general, the  damage value (for a 
given exceedence probabi l i ty)  and the  exceedence probabi l i ty  ( for  a 

given damage value) are both changed i n  somewhat less than the  same 
proportion as the change i n  the  standard deviations of the  a i r p o r t  

damage dis t r ibu t ions .  

With regard t o  the two r i s k  p ro f i l e s ,  

A change i n  p , the  expected number of accidents i n  a year,  has 
no e f fec t ,  of course, on the  na t iona l  condltonal damage d i s t r ibu t ion ,  

but Table 4-12 shows t h a t  i t  changes the mean of the annual damage dis- 

t r ibu t ion  i n  the same proportion and the standard deviation of t h i s  

d i s t r ibu t ion  i n  a smaller proportion ( the  square root of the  previous 

one). 

roughly proportional t o  the  change i n  

Table 4-11 shows tha t  the  e f f e c t  on the  annual r i s k  p r o f i l e  is 

1-1. 

In overa l l  summary, then, our s ens i t i v i ty  analyses show tha t  

changes i n  the means or etandard deviations of the  a i rpo r t  damage die- 

tributlcpns o r  i n  the expected number of accidents In a year produce 
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The t h i r d  mejot Tree of error in the r i s k  ana lys l s  modeling 

steam frm samplw error ia exercisfng the simulation. 
r4hulatioD ts done properly, statistical technfques are available to 

treat t h i s  type of error. 

Providing the 

5.1 Simulation d e l  design 

One current  simulatson model generates, by Monte Carlo simulation, 
a conditional (gfven an accident) r i s k  p r o f i l e  f o r  each a i rpo r t .  knot- 

& the CDF generated f o r  airport i by PY)(x) and letting pi 

represent the  condPtionel probabi l i ty  t h a t  an accident occurs a t  a i r p o r t  

i , given tha t  i t  happens a t  some a i rpo r t  i n  the  U.S., then the  condi- 

tional (given an accident somewhere i n  the  United States)  r i s k  p ro f i l e ,  

denoted by 1-P")Cx) , is obtained from 

Even assuming t h a t  exact confidence bounds could be found fo r  the  

Pll)(x) , and t h a t  the pi's were exact and not estimated, i t  would 

stf.11 remain a most d i f f i c u l t  ( i f  a t  all possible) task to  obtain exact 

confidence bounds on P'')(X) . 

Further, to  get the  unconditional nat ional  annual r i s k  Prof i le ,  

the P(')(IS) are cGnVOlVed as follows: 
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where P(*)(x) 
P(i)  b the probability of Z accidents in a year. Ewen assuming the 

P(i) are exact a d  that confidence pounds could somehow de determioad 

fer F ( ” ( 3  
tain confidence bogads on P(x) 

la the a-fold convolution of F(’)(xl with I t s e l f  and 

the convolution procedure makes it wery d i f f i cu l t  to  ob- 
(especially i f  exact bounds are desired). 

In order t o  t a b  advantage of the available o t a t f s t i ca l  theory 
for calculating wtid confidence bounds, it is necessary to  modify 

the Monte Carlo simulation procedure sketched above. 

major problem which prevent the use of valid statistical procedures 

in the above model- des- are (1) probabilist ic mixing of indivld- 

ual airport conditional (on one accident) r i sk  prof i les  t o  get a national 
conditional risk profile,  and (2) c o m l v i n g  the national conditional 

risk profile to  obtain the unconditional national r b k  profile.  

ing an4 cowolving of CDFs (or complementary QIFs such as the risk pro- 

f i l e s )  invalidate the available statistical theory. 

As iadicated, two 

The m i x =  

To get around these problems, we suggest t h e  modified simulation 
procedure of Section 4.4.1, which w e  repeat here: 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Step  5: 

Step 6A: 

Generate by Monte Carlo methods the number of accidents 
i n  a year. 

Determine bv Monte Carlo methods at which airoort  each 
of the accidents generated in Step 1 occurs. 

For each accident, determhe the cost. 

Total the cost of al l  the accidents for the year. 

Repeat the above four steps n times (yielding a 
sample size of n years). 

Compute the  empirical national annual r i sk  prof t le  
direct ly  for  the sample of n years from t h e  S tep  
4 values. 
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Step 6B: Comgwte t he  empirical natlonal condlt.&onal (glvea one 
accident) r i s k  profile d f ree t ly  for the sample of n 
years' worth of accidents frola the Step 3 values. . 

In tbb way, the  statistical theory dhcussed In  t he  following 
riectlona can be applied to both the  n a t i o n d  coaditi-1 rfsk p r o f i l e  

and the unconditional national annual r i s k  profile.  

larger sample sizes than presently being used, but t he  advantage is tbat 

the sample sizes required for the  amount of confidence and precision 

desired can be computed I n  advance. 

t h e e  computational proc@dures. 

Thh may result in 

The following sections illustrate 

5.2 Poiatwise confidence bounds 

The ' fo l lowiq  methodology all- for  confidence bound statements 

at a single point only.  

5.2.1 Biaomial bounds on the, r i s k  
f o r  a single value 

I f  i t  is desired to  obtain bounds on the r i s k  f o r  a par t icu lar  

value x then the binomial d i s t r ibu t ion  can be used t o  obta in  w e l l -  

accepted approximate bounds. Assuming the  number of independent siuw 

l a t i o n  runs, 
binamfa1 ([nP(x,)] and n[l-F(xo) 1 should be 2 S), approximate 

100( 1-a) X confidence bound are 

0 '  

n , is large enough for the normal approximation t o  the 

Note tha t  the band width of the bound gets smaller fo r  large 

which is the property we desire; but t h i s  confidence statement is good 

a t  a s ingle  point xo only, and not fo r  a l l  x simultaneously. 

xd 

0 

I f  the normal approximation t o  the binomial is not adequate (which 

is probably the case fo r  the  sample sizes anticipated and the small ta i l  
probabili ty of i n t e re s t )  then e i t h e r  the Poisson approximation t o  the 
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bfaolP3sl or the exeet binoa3al it-13 antae be wed. For exaqlle, sup- 
p q e  r valusdl greater than x are observed in the  sample o f  siee n . 
Sums we desire to  find the l6-t ~ h l u e  of p for a btaomial distribu- 

tion such,that F(%r { asp) 2 a , w h e r e  X is a bloomial random wari- 
able w i t h  garmuatem n and p and 1-q i s  the confidence level de- 

sired.  Denoting thie M u e  by ^p s a one sided lOO(l-a)% confidence 

0 

interval estimate oi m(x0) is (0,;) . AS an i l lustration, let us 

assume that i n  n simulation runs bo values grea te r  than x,, are ob- 
( *  , . 

s e m d .  Then rd) and 

For values of r>O nuukrical search procedures would be necessary t o  

5.2.2 Nonparametric tolerance 
limits 

The prediction approach using tolerance l i m i t s  as described here 

is a l so  distribution-free. L e t  Xn (1) , Xn (2) , ..., Xn (n) be the order 

statistics from a sample of n observations from the  d i s t r ibu t ion  with 

CDF P(x) The problem is t o  predict  the (n+l)st. observation, 

which occurs i n  the future. In te rva ls  of the form 
xn+l ’ 

are used [see Aitchison and Dunsmore (1975)]. There are two measures of 

precisioo: 

intervals.  

mean coverage and guaranteed coverage (tolerance l i m i t )  
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5.2.2.1 

I s  follows t h a t  

terval (Xn (r) , 

(s-r)/(n+l) of 

Mean coverage: Coneldering t h a t  

on the average" (hence the name mean coverage) the  ln- 

Xr) w i l l  cover the  next observation with a proportion 

the instances when the procedure is repeated. 

l/(n+l) Care must be taken i n  applying t h i s  procedure; 

11 

Note t h a t  

fo r  example, one possible misinterpretat ion would be to  look a t  the  data ,  

note that X300 (')o) = $9M and then conclude t h a t  P(Xn+l > $9M) = 1/301 . 
The problem is t h a t  

The left-hand s i d e  equals 

f r e e  . 
P ( X ~ + ~  <m) = F(m) and is not dis t r ibut ion-  

5.2.2.2 Guaranteed coverage (tolerance limits): In  t h i s  cas. two 

values, a and y , are specif ied,  where y is the  probabi l i ty  of cov- 

erage and l-a is the  guarantee o r  ccifidence. The desired in t e rva l  

sat is f ies 

P F(XP)) - F(X(')) - y = l-a . I n I 
Thus w e  are 100(1-a)% confident that lOOy% of the  population w i l l  

f a l l  i n  (X ('I, X")) . The probabi l i ty  

is dist r ibut ion-free and can be expressed i n  terms of an incomplete b e t a  

function. See Aitchison and Dunsmore (1975), David (1970), and Walpole 

and Myers (1978). 
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such a 

5.2.3 An upper binomial bound 
for it(%) a fo r  a 
fixed "0 

Using o normal approximation t o  the  binolsSal9 the half-width of 

sonfidence region w i l l  be 

t o  achkve  lOO(1-a)X confidence. In the  tails t h i s  w i l l  be approxi- 

mately z 7 R(%)/n If we are looking at  xo Whici- correspouds t o  a 
a 

tai l  probabili ty of ldd and wish t o  be 100(1-a)%; confident t ha t  our 

estimation e r r o r  is also less than 

s a t i s f y  

, then w e  must approximately 

z = lo-d . a 

For example, if w e  want t o  be 99X confident when the t a i l  probabili ty is 

of the order of , then n s a t i s f i e s  z . O l  4-t o r  

2.326/& = , which implies hi = 232.6 ; and hence n = 54,103 a 

5.4~10 . In general, t o  make 100(1-a)% confidence statements about 

R(x ) when it is of the order of , one needs n = z,lO obser- 

vations, for fixed x If i t  turns out tha t  nR(xo) is l ike ly  t o  be 

less than five--so t h a t  the normal approximation might not be valid-- 

then the exact binomial d i s t r ibu t ion  would have to b e  used, necessitating 

a numerical search procedure t o  find n . 

4 

2 d  
0 

0' 
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5.2.4 Mean coverage prediction 
in t e rva l s  

If a sample of size  n is drawn and 

(r) (8)) 

(s-r)/(ntl)  . 
are the order statistics, then the prediction in t e rva l  

has mean coverage of the (n+l)et observation equal t o  

An i n t e rva l  of t h e  form (0 ,  X p '  has mean coverage equal t o  n/(n+l) . 
Thus, in order t o  ge t  mean coverage of 1 - lowd , approximately l U d  

observations are required. Eence f o r  a probabili ty of f o r  the  

next observation exceeding the l a rges t  of the n samples, n must 

be lo4 . 

(Xn , Xn 

The in te rpre ta t ion  of mean coverage is tha t  i f  t h i s  procedure is 
used many times the resu l t ing  in t e rva l s  (one for  each r epe t i t i on  of the 

procedure) w i l l  cover the (n+l)& observation a proportion of t i m e s  

equal t o  the mean cclverage or,  equivalently, w i l l  not cover it a propor- 

t i on  equal t o  one minus the mean coverage. 

5.2 .5  Guaranteed coverage prediction 
(tolerance) in te rva ls  

We are interested i n  distribution-free prediction in te rva ls  of 

the form ( 0 ,  Xn ('I) which s a t i s f y  

E 1-CL 

for a specified coverage value y and guarantee probabili ty l-a 
( t h i s  is a one-sided version of the type discussed i n  Section 5.2.2.2. 

Here P(XF)) has a beta d is t r ibu t ion  w i t h  parameters 8-1 and n-s 

with density 
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It is a e p p t o t i c a l l y  nolcolal with mean s/(n+l) and variance 

s(n-s+l)/[(n+l) (n+2)1 If s/n = p , i.e., 

f r a c t i l e ,  then ~(x:)) is asymptotically normal (p, [p(l-p)l/n) . 
2 

X(-” is the pth  sample n 

Consider the  case of using ‘0, X(n)) as a guaranteed coverage n 
prediction in te rvs l ;  then 

and 

n = log@) 
log(Y) 

The sample sizes required t o  achieve preassigned values of 1-a and y 

are given i n  Table El. 

TABLE 5-1 

SAMPLE SIZES FOR A ONE-SIEED TOLERANCE LIMIT 

.99 

0 995 

.999 

I Y 
.99 .995 .999 .9995 .9999 

299 598 2994 5990 29956 

458 919 4603 9208 46049 

527 1057 5296 10594 52980 

687 1378 6904 13812 69074 

Thus, using t h i s  procedure, i f  we wish  t o  deal w i t h  t a i l  probab l i t i e s  

of low4 (or coverage of ,9999) w i t h  99% guarantee, w e  need 46,000 

observations. 

Myers (19783, page 550. 

tab les  similar t o  Table 5-1 may be found i n  Walpole and 
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Amisuge of the above procedure tha t  i e i  tempting but not cor rec t  

ia the following. 

annual cost is of  Interest. Take a sample of s ize  n and note the  

anallest order statist ir  h a t  Ss greater than  lOM, c d l i n g  It X:’ .. 

Suppose a pa r t i cu la r  break-off point such as $1OM 

Using t h i s ,  compute P{F(Xn ( 8 )  2 yQl f o r  some desired yo , and obtain 

a guarantee probabili ty l-a0 . Then, make the  statement t ha t  (0,SlOM) 

has a 100(1-u)% guarantee of coverage of 100yo% . The above is not 

j u s t i f i ed ;  it is ca l led  &$a snoop&zg. 

5.3 Simultaneous confidence bounds 

The following methodology allows for simultaneous confidence 

b o w  statements over the entire r i s k  profile.  

5.3.1 Kolmoaorov-Smirnov (K-S) 
type confidence bounds 

The K-S s t a t i s t i c  gives the maximum deviation betweeu an empirical 

and a t rue  CDF and is denoted by Dn , so t ha t  

A 

Dn PUP]  P,(x) - P(x)J . 
X 

Durbin (1973), Hoel, Port, and Stone (1971); Dixon and Massey (1969); 

and Breiman (1973) include discussions of t h i s  s t a t i s t i c ,  both fo r  test- 

ing Ho: F = Fo and for constructing simulataneous confidence bounds on 

the unknown F . Dixon and Massey (19f9) re fer  t o  the K-S statist ic as 

a d-sta.Sistic. 

exponential using a modified K-S s t a t i s t i c  where the  mean of the hypoth- 

sized exponential is estimated from the sample. 

L i l l i e fo r s  (1969) treats t h e  case of t e s t ing  Ho: F = 

Confidence bounds using Dn can easily be obtained by noting tha t  

U 1-Cl 
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where dd2(n) 

e l r e d  (1-a) and t h e  sample s ize  (n). 

is t abula ted  and depends on t he  level of  confidence de- 

Rewriting 5.1 we have 

y ie ld ing  as t h e  lower and upper confidence bound curves l-sn(x) k 

dd2(n) . Denoting the  r i e k  p r o f i l e  l-Fn(x) by Rn(x) we have 

confidence bounds of Rn(x) k da12(n) 

A A 

A 

One problem is t h a t  the  upper confidence bound approaches a con- 
A 

stant value f o r  small values of R (x) s ince  d (n) is a f ixed  con- 

s t a n t  added to  the  empir ical  value 

would look like t h a t  shown in Figure 5-1. 

n a/ 2 
h 

Rn(x) . A p l o t  of the  K-S bound 

X 

Damage 

F@WS 5-1.--K-S bounds. 

It should be pointed out  t h a t  the type of statement we can make 
from such bound8 is the following: 
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"Wtth confldence lOO(l-u)% , the p robab i l i t y  of damage exceeding 

lies between [l-Pn(xO)J f d,,*(n) f o r  all values xQ e'' 
*. 

"0 

This is an extremely powerful statistical statament.  

5.3.2 Upper K-S baunds for the  r i s k  p r o f i l e  R(x) . 
We would general ly  be in t e re s t ed  i n  only one-sided confidence 

bounds, namely, t he  upper bound on the r i s k  p ro f i l e .  
are la rge ,  the asymptotic theory can be used--in which case the one- 
sided c r i t i c a l  values when using the  K-S s ta t i s t ic  are as shown i n  

Table 5-2. Thus, f o r  example, P{R(x) - Rn(x) < 1.52/m .99 , and 

t o  dea l  with tail p robab i l i t i e s  of the order  of IOa4 with 99% confidence 
requi res  a sample s a t i s f y i n g  

Since sample s1Tes 

A 

5 

8 or n 5 2.3 X 10 . - 1.52 21 10-4 

fi 

TABLP 5-2 

SAMPLE SIZES FOR UPPER K-S 
CONFIDENCE BOUNDS 

Confidence Level  Half-Width 

0 95 1.22 / 
.99 1.52 I & 
.995 1.63 1 & . 999 1.86 1 & 
.9995 1.95/  6 
.9999 2.15 / & 

Some other  sample s i z e s  required t o  obta in  various confidence l e v e l s  i n  

p robab i l i t i e s  of ce r t a in  orders  are given i n  Table 5-3. 
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TABLE 5-3 

SAMPLE SIZES FOR VARIOUS TAIL PROBABILITIES AND CONFIDENCES 

Ccnf idence 

95 

99 

995 

.999 

.9995 

9999 

T a i l  P robab i l i t y  of Interest 
lo-2 loo3 loo4 

1 . 5 ~ 1 0 ~  1 . 5 ~ 1 0 ~  1.5X108 1.5x1010 

2 . 3x10 2.3X1O6 2 . 3 ~ 1 0 ~  2 .3~10~ '  

2.7 >:lo 2.7x10G 2.7X10 2.7X1010 

3.5X10 3.5X1O6 3.5X1O8 3.5x1O1O 

3 . 8 ~ 1 0 ~  3.8X106 3.8X10 3.8X1O1O 

4 . 6 ~ 1 0 ~  4 . 6 ~ 1 0 ~  4.6~10'  4 . 6 ~ 1 0 ~ '  

Roughly speaking, t o  be a b l e  t o  make confidence s ta tements  about prob- 

a b i l i t i e s  of t he  order  of 

t h a t  order ,  . To achieve a one-sided K-S bound of half-width 

, the  width of the  band must a l s o  be  of 

requi res  approximately 1 02d observations.  

5.3.3 Modified Ka*mogorov- 
Smirnov co.. idence 
regions 

One problem with K-S bounds is t h a t  f o r  very small values of 

r i sk ,  the term d (n) overwhelms ftn(x) . It seems des i r ab le  t o  ob- 

t a in  conf.idence bounds such t h a t  d (n) decreases with increasing x 
a 

so t h a t  one obta ins  a p i c tu re  such 5s t ha t  shcwn i n  Figure 5-2. There 
are some genera l iza t ions  of the  K-S s t a t i s t i c  which might he lp  i n  t h i s  
egard. 

the  bounds coming "in" a t  l a rge  (and small) values of x b u t  these 
bounds are only approximate. 

found i n  Anderson and Darling (1952), and Durbin (1973). 

Q 

The Anderson-Darling (A-D) s t a t i s t i c  can have the  property of 

Discusaion of t he  A-D statist ic may be 

Another 
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v r a l i a t a m  of K-S, called Ppaeralised D+ statistic, the 

bo& partially cxmlng in at the ends--a sort of situation between 
K-S and the approximate A-D [see, for example, DePlpster (1959) and 
bass (1939)l. 

c 
d 

x 

In this sec t ion  we inves t iga te  a method of construct ing a s h l -  
taneous confidence region which is narrower in the  r i g h t  tail. 

enables one t o  be more confident i n  the r ight-- ta i l  p r o b a b i l i t i e s  a t  the  

expease of less confidence In the  c e n t r a l  and l e f t - t a i l  p robab i l i t i e s .  

Thle 

Let R(*) be the cumulative r i s k  function: R(x) = P{risk exceeds 

x) . Let F(x) 1 - R(x) be the  CDF of the  r i sk ;  R is estimated by 

the empirical  r i s k  function , based on a simulated sample of n 

accidents  (or n years). 

It is desired t o  estimate R with a confidence region based upoc 

R , o r  eqr tva len t ly  F with a confidence region based on Fn . Be- 
cause we are primarily in t e re s t ed  i n  the r i g h t  t a i l ,  we would l i k e  a 
region which is narrower In the  tail.  

A h 

n 

A very des i r ab le  region would be 
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where B > O  . I f  g = 9  , we are one order of magnitude wide. Unfor- 
tunately it fe impossible to get a region of t he  form (5.2). 

Xp’ is the l a r g e s t  of the  n simulated walues, then gn(x) = 0 for 

x > X r ’  ; but P { R ( X )  = 0 )  < 1 and i f  R is continuous P{R(X(n) n = 

01 = o . nus P { R ( ~ )  < sn<x) + @in(x) fo r  all XI = o . 

Suppose 

bwewer, it is possible to construct a confidence region of the  

form 
A A 

dere typically we might choose = IO-*, or and I+B = 

m, 10, fis; Le., 4, 1, o r  1% orders of magnitude. 

region fo r  F = 1 - R would be 

The equivalent 

Thus 

By the  standard distribution-free argument, ( 5 . 4 )  is indepenaent of F , 
so fo r  computation we can let  F(x) = x , the uniform [ O , l ]  distribu- 

tion. L e t  on(*) be the empirical d i s t r ibu t ion  function of uniform 

order statistics, then 

- P Un(x) <bx  + a, fo r  a l l  x} r 
where b - 1/(1+B) and a = (c&f$)/(l+B) . The probability ( 5 . 5 )  can 

be calculated. Explicit  formulae fo r  it are given i n  Durbin (1973). 
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It is poesible to find the sample size n which achieves 

for  various combinations of a, 8, y, e.g., yp.01, .OS ; l+fJ = m, 
10, ; a=10-~, . ais enables one to tab a large 

enough simulated sample t o  achieve any desixcd precision in a simarlta- 
mom confidence region. 

To illustrate the usefulness of the above modified K-S region, 
w e  consider an example. 

f i l e .  
K-S 9% confidence region is 

Figure 5-3 shows a typical simulated risk pro- 

I f  this is based on a sample of 500 observations, then the usual 

This region is shown i n  

can be computed using a 

a+b-1 
bn 

Pn(a,b) = - 

N u m e r i c a l  methods can be 

Figure 5-3. The modified region R < 22 + d 

formula for  pn(a,b) from Durbin (1973): 

used to solve the equation 

psOo (a,.5) = -95 . 
The solution is a = .50375 . This gives a modified K-S 95% confidence 

region 

R < 2 i  + .0075 . 
This region is also included i n  Figure 5-3. 
greater precision in the right tail.  

of precision i n  the right tail.  

Note tha t  i t  gives much 

This is achieved a t  the sacr i f ice  

It should be noted that the t a i l  of an empirical CDF behaves l i ke  

a Poisson process and consequently the proper t ies  of these modified K-S 
regions can be approximated by properties of Poisson processes; see 

bass (1974) and Pyke (1959). 
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5.4 rima of rrrocdures 

The K-S procedure gives the greatest f lexibi l i ty  because i t  pro- 
v-deer sirsultaneous b d s ,  bu t  this is pald for with a hwe sample size 
rsgufrement. 'Re madifled 8-S procedure reduces this price sonawltat. 

If  a siqle cut-off value % can be fhed ,  f o r  which a confi- 

dence region on a(%) 

blnodal  d is t r ibu t ion ,  with considerably fewer o68ervatioas than the 

+.-So 

is useful,  thie can be obtained using t he  

However, it can be dona ~ l l Q  for a single poiat. 

I f  a desired BLBBZL coverage probabi l i ty  or coverageguarantee 
pair can be predetermined, then the predict ion interval approach may be 

TIS&. Elouwer, data snooping is not allowed. 

A comparison of sample sizes required to  achieve a precis ion of 

with 99% Confidence is given i n  Table 5-4. (Note that Mean Cover- 

age statements & not involve confidence.) 

6. Consemtiwe Risk Prof i l e s  

Engineering design has long used "safety factors" t o  ensure the  

adequacy and the  sa fe ty  of physical and e lec t ron ic  systems. 

be looked at as a heur i s t ic ,  but operationally viable ,  way t o  deal  with 

the unceiiainty of the environment i n  which a given system w i l l  operate. 

Not having s u f f j s i e n t  knowledge about the environment to  design f o r  it 

precisely,  1.- : takes a "conservative" approach i n  using safe ty  fac tors  

t o  desig. r'or extreme conditions t h a t  might arise. 
t h a t  i r  there  is an "error" i n  the  design, then i t  is surely an "error 

01 the  conservative side." 

This may 

One can then say 

It seems des i rab le  t o  follow a s imi la r  pr inc ip le  of conservatism 

i n  generat l td  and reporting r e s u l t s  of the GFRAP. 
@RAP w i l l  ult imately report  the r i s k s  associated with the uee of CF i n  

cob"Per'ical a i r c r a f t  t o  be "sm. 1," the  r e s u l t s  of the  r i s k  analysis  will 
be more readi ly  accepted i f  it can be s t a t ed  t h a t  they overestimate the 

Assuming t h a t  the 
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m1~gorOv-sndrnow 

8 R ii. + IO+ , n = 2.3 x 10 

E < It + , n = 2.3 x 10 4 
A 

= E a  

.Modified ICohgorow-Smirnov (Poisson a p p r o x h t i o n )  

4 n - 4.6 X 10 

4 n =  5 .4 x 10 

4 n = 10 

4 n = 4.6 x 10 

t r u e  risks. 
sent  the "true rfsks" because of modeling l imi ta t ions ,  da ta  Inadequacies, 

and l imited f inanc ia l  resources. 

It should be s t a t e d  tha t  it is not  r ea l ly  possible  t o  pre- 

The r e s u l t s  of the  r i s k  ana lys i s  are summarized i n  two r i s k  pro- 

f i l e s ,  the  nat ional  annual r i s k  p ro f i l e  and the national conditional 

(given one accident) r i s k  prof i le .  We therefore  use the  following 

concept of conservatism fo r  r i s k  prof i les .  

not cross,  i t  I s  j u s t i f i a b l e  to say tha t  the one above and t o  the  

r igh t  of the other  is more conservative (or pessimist ic ,  or r e p r e s m t s  

I f  two risk p r o f i l e s  do 
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a greater amount of risk). 

such a -e. 
that f o r  r =  1 . 
following two obserwrtioas: (1) For every damage value d the pro- 

f i l e  f o r  r = 2  shows a higher probabili ty of exceeding d than does 

the p r o f i l e  fo r  r = 1 . (2) For every probabili ty p the p r o f u e  f o r  

r = 2 shows a higher value d such that ProbIdamage > t i )  - p than does 

the  p r o f i l e  f o r  r =  1 . 

Figure 4-25 (in Section 4.4.3) illustrates 
is above and to the right of The r i s k  p r o f i l e  for r = 2 

That the former is more pessimistic folllows from t h e  

Thus i f  we present G W  results $n the  form of r i s k  p r o f i l e s  

which are known t o  be above and to the rdght of the "true" &awn r i s k  

prof i les ,  we present r e s u l t s  which are conservative. 
concerned w i t h  methods by which such conservative risk p r o f i l e s  may be 

obtained. 

which do not cros8 through the concept of s tochas t ic  dominance. 

6.2 shows how this concept can be used operationally i n  the  GFRAP in 
order t o  obtain conservative results, and Section 6.3  summarizes and 
i n t e rp re t s  the preceding developments. 

Section 6.2 without proof i n  order t o  conserve space. 

Tbis sec t ion  is 

Section 6.1 formalizes the above concept of two r i s k  p ro f i l e s  

Section 

Several theoremu are s t a t ed  i n  

6.1 Stochastic dominance 

Stochastic dominance is a concept which has become very important 
i n  the  area of decision making under uncertainty, but it also has useful 

application here t o  r i s k  profiles.  The following def in i t ions  and proper- 

ties may be found i n  Whitemore and Pindlay (1978) unless noted otherwise. 

We adopt the notation that  5 * l -F for  any CDF P . 
The.ba8is def in i t ion  of f i r s t  degree atochastic dominance is the 

following: Let F and G be CDF's. Now P s: G (P "stochastically 

dominates" G) i f  and only i f  F(x) z&) 
This says t ha t  F G i f  and only i f  the r i s k  p r o f i l e  corresponding t o  

t h e  CDF F lies above (or at least not below) and to  the r igh t  (or a t  
least not t o  the l e f t )  of tha t  coriesponding t o  G ; i.e., the  r i s k  

P 

for  a l l  real values x . 
i 
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profile e o m n c l i n $  ts F is conservative relative to that correspond- 

ing to G .  

Another notation for  ind ica t ing  first degree s t o c h a s t i c  dominance 

ia in terms of random var i ab le s  having the  ind ica ted  CDF's. L e t  X and 

Y be r a n d o m  variables wi th  respec t ive  OF'S F and G . One writes 

X a Y If and only i f  F ': G . - 
A useful result I s  t h e  foll lowlng: L e t  U1 be  the  set of nonde- 

c reas ing  functions on t h e  real lbne. Then F s: G i f  and only i f  

/udF 2 ,fudG for a l l  funct ions u i n  U1 f o r  which these  i n t e g r a l s  
- - 

d s t .  
- 

Suppose G represents  one of the  two "true" r i s k  p r o f i l e s  t h a t  

arc des i red  among the  f i n a l  outputs  of t he  GFRAP r i s k  ana lys i s .  

being a b l e  to determine 

r i s k  p r o f i l e  F such t h a t  P sc G . 
estimated and projected q u a n t i t i e s  and p robab i l i t y  d i s t r i b u t i o n s  which 

enter the  s imulat ion model by "conservative" ones. 

proyides details. 

Not 

G , as ind ica ted  above, w e  want t o  repor t  a 
- 

The general  idea  is to  replace a l l  - 

The next s ec t ion  

6.2 Obtaining conservative r i s k  
p r o f i l e s  

We dea l  f i r s t  with the  na t iona l  annual r i s k  p r o f i l e  and relate r t  

t o  the na t iona l  condi t ional  (given one accident)  risk pro f i l e .  Denote 

these by E and P , respec t ive ly ,  and def ine the following random 

var iab les  : 

Xi * the  damage done by the  ith accident  t h a t  occurs 
during the year,  i= l ,2 , .  . . ; 

S = the  t o t a l  damage done by a l l  accidents  t h a t  occur 
during the year; 

2 = the  number of accidents  t h a t  occur during the 
year. 
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Then S has CDF B , each Xi has CDF F , the Xi are mutually i n d r  

pendent, and 

where is a random variable  which is iden t i ca l ly  zero. 

Let the  CDF of the  d i s c r e t e  random variable  2 be G , and con- 
s i d e r  what happens if G is replaced by G* , where G* is the  CDF of 
another d i sc re t e  nonnegative random variable ,  say Z* , such t h a t  

st 
E -1 G* > G ; Le., 2* > 2 L e t  

2* 

io0 
s* = xi 

and le t  H* be the  CDF of S* . Theorem 6.1 then states tha t  H* %t H 
so t ha t  a conservative r i s k  p ro f i l e  is obtained by replacing the CDF of 

2 by a CDF which is s tochas t ica l ly  greater. 

= 

Theorsm 6.1: I f  G* "2 G , then H* 'It H o r  equivalently,  S* z1 S . - - - 

We have assumed tha t  Z has a Poisson d i s t r ibu t ion  with mean 1.1 . 
The next theorem states tha t  increasing the value of 

G* f o r  Z* such tha t  G* %t G . 
p yie lds  a CDF of 

I 

Theorem 6.2: Suppose Z and Z* both have Poisson d is t r ibu t ions  with 

respective &an8 p and p* . G* '>t G , i f  and 

only if 

Then Z* & Z , i.e., 

p* 2 1.1 . 
Theorems 6.1 and 6.2 together indicate  tha t  the use of a mean 

number of accfdents per year grea te r  than the t r u e  mean w i l l  y ie ld  a 
conservative r i s k  prof i le .  

- 1 1 2  - 
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loow suppose t h a t  the CDF F corresponding to t h e  national coadi- 

t i o m l  r i s k  p r o f i l e  id replaced by a CDF Fd such t h a t  Fg 2 F . 
Clearly t h i s  w i l l  lead to  a conservative r i s k  p r o f i l e ,  say  E# . 
mally, l e t  Xi (i=1,2,. . ) be mutually independent random va r i ab le s  

with CDF F . Now def ine  

For- 

# 

# 

" 

# and let  8' be the  CDF of S . 
# st # s t  # 

fPhwPem 6.3: I f  P > P , then H 2 H , o r  equivalent ly ,  S > S . 
-1 - - - 

For the  GFRAP, t he  national condi t ional  risk p r o f i l e  is t he  

d i f f e r -  Na weighted average of the  single-accident r i s k  p r o f i l e s  a t  the  

en t  a i rpo r t s .  Using the  nota t ion  of Section 4.4.1, we  have 

or equivalent ly ,  F = CipiFdi . I f  scme of the  Fdi are replaced by 

CDF's which dominate them it is c l e a r  t h a t  a conservative na t iona l  condi- 

t i o n a l  risk p r o f i l e  is obtained. Formally, w e  have Theorem 6.4. 

II = I Theorem 6.4: I f  Ffd Fid f o r  i=1, ..., N and F - FiPiFid , a '  

then F" 2 F . 
I n  Theorem 6.4 the  pi values are held fixed. I f  they are al- 

lowed t o  vary, some must decrease while o thers  increase s ince  t h e i r  sum 

remains equal t o  one. It is i n t u i t i v e  t h a t  i f  the p 's which increase 

correspond t o  CDF's which dominate the CDF's corresponding t o  the pi 's 
i 
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which decrease, 

obtained. This 

then a conservative na t iona l  condltional r b k  p r o f i l e  is 
+ -  is now formalized. L e t  N - {1,2,..*,Na} and let I ,I 

# be d i s j o i n t  subset8 of N . Define a new set of probabi l i ty  values pi , 
i E  N , such that 

# 
Pi ' Pi , i f  i E I +  , 

# 
Pi < Pi 9 i f  i d  , 

p: .= pi , otherwise. 

Now l e t  F' = &pipid # 

Theorem 6.5: If Fid 

# and j E 1- , then F 

g w e  obtain: 

+ Y F fo r  every p a i r  ( i ,  j) suth t h a t  i E I 

$ f P .  P 

- j d  

Now w e  s t ep  back and concentrate on the CDF F of the  damge i d  
per accident at a i r p o r t  i . We w i l l  show how t o  obtain a conservative 

estimate of its corresponding r i s k  p r o f i l e  Pid . 
subscr ipt  i , fo r  couvenience, and t o  indicate  t h a t  the  analysis  appl ies  

a t  each a i rpor t .  

We f i r s t  drop the  

Consider t h e  random variable  X , defined t o  be the damage done by 
an a rb i t r a ry  accident a t  a pa r t i cu la r  a i rpor t ;  it has CDF Fd . This X 

is the sum of the  costs  due t o  the f a i l u r e  of various e lec t ronic  and elec- 
trical components and systems. 

which could be affected by an accident from 1 t o  M (a la rge  f i n i t e  num- 

ber),  and def ine the random variables  

We number a l l  the components and s y s t e m  

Y = 1 i f  component o r  system j f a i l s ,  
j 

= 0 otherwise 

C = t h e  cost  incurred i f  Y = 1 . 
j j 
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We assume the C 

3 

to  be  mutually independent and independent of 
j 

t he  Y . Now we write the damage X as 

If 
x = 1 CjYj . 

3-1 

j 
From thfs expression it  is  clear t h a t  rep lac ing  the CDF of any cos t  

by a CDF that dominates i t  w i l l  l ead  t o  a r i s k  p r o f i l e  t h a t  is conserva- 

tive r e l a t i v e  t o  Td . Formally, l e t  X* - Then w e  have: 

C 

Theopm 6.6: Cj* zl Cj f o r  a l l  j = l , . . . , M  implies X* > X -1 

We c l e a r l y  have an  analogous r e s u l t  i f  the Y are replaced by Y* 

such t h z t  Y* L~ Y . Note t h a t  t h i s  means we replace t h e  f a i l u r e  prob- 

a b i l i t y  of component j by a value a t  least  as la rge .  Now l e t  X* = 

j j 

j j 

*orem 6.7: Y* L1 Y f o r  a l l  j = l , . . . , M  implies X* > X j j -1 

Now ve w i l l  concentrate on condi t ions which Imply Y* > Y 
j-1 j 

f o r  a l l  j . According t o  the exponential  f a i l u r e  model the  probabi l i ty  

d i s t r i b u t i o n  of Y is spec i f ied  by Pr(Y = 1) = 1 - exp(-W ) , 
1 j j 

where the random va r i ab le  W is defined by 
j 

and 1 is the  mean exposure t o  f a i l u r e  of component j , E is the 

outs ide  exposure appl icable  t o  component j , and T is the ove ra l l  

t r ans fe r  coeff i c i e n t  (or  t r ans fe r  function) appl icable  t o  component j 

i n  its individual  environment. Here T 

as (independent) random var iab les ;  E 

j j 

j 

- , and E are a l l  t r ea t ed  

is indeed a random var iab le ,  and 
j ’ .I 

J 
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T and E are t rea ted  as such because of a lack of s u f f i c i e n t l y  pre- 3 3 
c i s e  lnformpr'.Lon to specify t h e i r  values exactly. 

exponentia., fctilure model is i t s e l f  a conservative assumption f o r  the  

GFRAP ( r e fe r  t o  Section 4 .2 .3 ) .  

Note t h a t  use of the 

The next theorem follows from the  result  given i n  Section 6.1. 

Theorem 6.8: Specify Y* by Pr(Y*- 1) = 1 - exp(-Wj*) . Then 
j j 

M* > W implies Y* Ll Y 
j .-=1 j 3 3 

NOW we concentrate on M L e t  W* = T E*/E Since 1 J .  -p 
j j 3 1  3 - 

E , , E , and if* are a l l  pos i t ive  random var iab les  one obtains:  
j 3 3 

Theorem 6.8: If T* > T , E* E and E > E* then W* > 

and sa Y* Y . 
j-1 j j j j-1 j j -1 wj 

j-1 j 

The last thing we wish t o  do here is  relate the  exposure E t o  3 
certain cha rac t e r i s t i c s  of the  accident t ha t  produces t h i s  exposure. 

is c lear ly  reasonable to  assume tha t ,  with other fac tors  (such as wind 

d i rec t ion  and v e ' x i t y ,  a i r c r a f t  type, duration of the  burn, e t c . )  held 

constant, 

It 

tha t  is, E is d i r ec t ly  proportional to  (K is the  proport ional i ty  

the quantity of CF composite on the constant) the product of Q 

a i r c r a f t ,  

in the  f i r e ,  and Fr , the f rac t ion  of the CF burned tha t  is released. 

5 
cf ' 

Bi , t h e  f rac t ion  of the CF composite carr ied tha t  is involved 

as random variables ,  and defining E* as 
'r j 

Q cf 9 pi 9 and Treating 

the exposure obtained i n  place of E when Qcf , Fi , and Pr are 

replaced by Qtr , FP , and PZ , respectively,  we obtain the following: 
il 
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F* > F , and PZ 3 Fr implies E* > E I = =  J Tlasoim 8.20: QEf 3 Qcf , 
f o r  a l l  j = l , . . . , M  

6.3 Summary 

We have t r i e d  i n  t h i s  s ec t ion  t o  give some prec is ion  t o  the  notion 

of  a "conservative r i s k  analysis"  through the  concepts of SCOJ ' rO .p ' j z  

dominance and conservative r i s k  p ro f i l e s .  I n  essence, w e  have mown t h a t  

replacing t h e  probabi l i ty  d i s t r i b u t i o n s  w e d  i n  t he  GFRAP r i s k  s imulat ion 

model by probabi l i ty  d i s t r i b u t i o n s  which s tochas t i ca l ly  dominate them 

w i l l  l ead  to a conservative r i s k  ana lys i s .  

t i ons ,  da t a  inadequacies, etc. prevent us from determining the  " t rue r i s k  

p r o f i l e s  ," we think i t  appropriate  t o  r epor t  r i s k  p r o f i l e s  t h a t  ?an b e  

s t a t e d  t o  be conservative relative t o  the "true" ones. 

Given t h a t  modeling l imi ta -  

I n  more concrete terms, f o r  example, i f  the mean number of acci- 

dents  per  year 1.1 is projected t o  be, say,  2.6, but  it is recognized 
t h a t  t h i s  pro jec t ion  may be i n  error, then an appronriatelv determined 

higher  value, e.g., 3.0, should be used ins tead  i n  order  t o  produce a 

coitserv'itive na t iona l  annual r i s k  p ro f i l e .  

s ta te  t h a t  i t  is confident ly  believed t h a t  the t rue  value of 

exceed 3.0. 

1 

It would be appropriate  t o  

p does not 

I 

The s i t u a t i o .  +s somewhat d i f f e r e n t  when it  is des i red  t o  replace 

a random var iab le  by a s p e c i f i c  numerical value. 

the case of F the f r a c t i o n  of the CF burned t h a t  is re leased.  It is 

known t h a t  

as a random variable .  

en t ly  ava i l ab le  ind ica tes  t ha t  values of 

improbable. It is then acceptable,  and conservative,  t o  use 

0.01 , s t a t i n g  t h a t  i t  is s u f f i c i e n t l y  confident ly  believed t h a t  Fr 

w i l l  not exceed 0.01 t h a t  such poss ib i l f fv  has been deleted from the  
modeling e f f o r t  . 

For example, consider 

r '  

Fr va r i e s  from accident  t o  accident  and should be t r ea t ed  

But suppose t h a t  the experimental evidence pres- 

Fr above 0.01 are extremely 

Fr = 
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